
Computer Science 331
Basic Data Structures

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #11

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 1 / 40

Outline

1 Objectives

2 Arrays
Static Arrays
Array Operations
Operations for Storage of Sets
Dynamic Arrays

3 Linked Lists
Simple Singly Linked Lists
List Operations
Operations for Storage of Sets
Other Types of Lists
Linked Lists in Java

4 Conclusion

5 Recommended Reading

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 2 / 40

Objectives

Objectives for Today

Objectives for Today:

Review of several basic data structures, including types of arrays and
linked lists

Assumption: You have seen most of this already! Some implementation
and analysis details may be new.

Suggested Exercises for Later:

Write specifications of requirements for the various operations being
discussed

Write a few of the algorithms sketched here in more detail

Sketch proofs of correctness, and analyses of worst-case running
times, using techniques from class

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 3 / 40

Arrays Static Arrays

Static Array

A data structure providing access to a fixed number of data cells of some
type

Attributes:

length : number of data cells for which access is provided
base type: the type of data to be stored in each cell

Data cells have unique integer indices between 0 and length − 1

A data cell can be accessed at unit cost by specifying its index

Many programming languages, including Java, directly support this
data structure

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 4 / 40



Arrays Static Arrays

Example

Suppose A is the following array of String’s:

0 1 2 3 4 5

a c x g h null

Length of A: 6

Base Type of A: String

Current value of A[3]: g

Charge to access or store an entry of A at a given index: 1 unit

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 5 / 40

Arrays Array Operations

Automatic Initialization of an Array

An operation like

String[] sArray = new String[25];

declares the type of a variable (in this case, sArray — setting this to be
an array that stores String’s) and sets the length of the array (in this
case, 25)

Initial Value in Each Cell: The default value for the base type

Default Value for Numeric Types: 0

Default Value for char Type: \u0000 (Unicode value of 0)

Default Value for boolean Type: false

Default Value for Class Types: null

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 6 / 40

Arrays Array Operations

Initialization of an Array with Values

Initial values can be enclosed in braces, separated by commas

A.length automatically set to the number of initial values listed

Example: The statement

int[] age = { 2, 4, 7, 3, 6, 5 }

creates the following array

0 1 2 3 4 5
age: 2 4 7 3 6 5

Cost To Initialize an Array: Θ(n), where n = A.length

actual cost is some function f (n) = an + b (a, b constants)

f (n) ∈ Θ(n) (definition satisfied for cL = a, cU = a + b, and N0 = 1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 7 / 40

Arrays Array Operations

Traversal of an Array

Visiting some or all of the cells in an array. . .

Beginning at some index (usually 0)

Going in either direction (usually by increasing index)

Since arrays allow direct access, implementing traversals is straightforward:

for (int i=0; i < A.length; i++) {
// process array entry A[i]

}

Worst-Case Cost for a Traversal: Θ(nT (n)), where T (n) is the
worst-case cost to process A[i]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 8 / 40



Arrays Array Operations

Application: Finding a Given Value

Strategy (linear search):

Traverse array from index 0

Compare each array element with the given value until it is found or
all entries have been checked

Return index if the value is found; throw an exception or return an
exceptional value (eg, −1) otherwise

Since at most a constant number of steps are used at each array index, the
worst-case cost is: Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 9 / 40

Arrays Array Operations

Replacing an Element of an Array (by position)

Problem: Given an index i and value v , replace contents at position i
with v

How To Do This: A[i] = v

Error Conditions:

i < 0

i >= A.length

Worst-Case Cost: Θ(1)

actual cost is a function f (n) = c (c a constant)

c ∈ Θ(1) (definition satisfied by cL = c , cU = c , and N0 = 1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 10 / 40

Arrays Array Operations

Replacing an Element of an Array (by value)

Problem: Given values v and w , replace w with v in the array, or report
that v was not found

How To Do This:

Find index i such that A[i ] = w or report that w is not in the array.
Cost: Θ(n)

Set A[i ] = v . Cost: Θ(1)

Error Conditions: none

Worst-Case Cost: Θ(n) (cost of the search function dominates)

f (n) = c1 + (c2n + c3) + c4 ∈ Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 11 / 40

Arrays Operations for Storage of Sets

Additional Operations for Storage of Sets

Suppose now that an array is used to store a set:

Elements of a set — and the values in the currently used part of the
array — are distinct

New attribute: numElements — size of the set currently stored

Requirements:

numElements ≤ length and the set’s elements are stored at positions
0, 1, . . . , numElements − 1
Default values for base type are stored at positions
numElements, numElements + 1, . . . , length − 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 12 / 40



Arrays Operations for Storage of Sets

Insertion of an Element into a Set

Problem: Given a value v , add v to the represented set

Error Conditions:

numElements = length (array is already full)

v is already in the set

Situations of Interest:

Storage order of elements in the array is unimportant and the new
element is guaranteed not to be in the set already

Storage order of elements in the array is unimportant but it is possible
that the “new” element is already in the set

Storage order of elements in the array is important

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 13 / 40

Arrays Operations for Storage of Sets

Insertion of an Element into a Set (Case 1)

Case 1: Storage Order is Unimportant and the New Element is
Guaranteed Not To Be in the Set

How To Do This:

If numElements = A.length, report that A is full.

Otherwise, set A[numElements] = v and increment numElements.

Worst-Case Cost: Θ(1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 14 / 40

Arrays Operations for Storage of Sets

Insertion of an Element into a Set (Case 2)

Case 2: Storage Order is Unimportant But the Element Might Be in the
Set Already

How To Do This:

If numElements = A.length, report that A is full. Cost: Θ(1)

If there exists an index i such that A[i ] = v , report that v is already
in A. Cost: Θ(n)

Otherwise, set A[numElements] = v and increment numElements.
Cost: Θ(1)

Worst-Case Cost: Θ(n) (cost of the search dominates)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 15 / 40

Arrays Operations for Storage of Sets

Insertion of an Element into a Set (Case 3)

Case 3: Insertion if Storage Order is Important:

How To Do This:

If numElements = A.length, report that A is full.

Otherwise, locate the index i where the element should be placed

“shift” all elements from the insertion location “up” one position in
the array and copy the new element into its correct spot.

Worst-Case Cost: Θ(n) (inserting into location 0)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 16 / 40



Arrays Operations for Storage of Sets

Deletion of an Element from an Set

Problem: Given a value v , remove v from the represented set

Error Conditions: v is not in the array

Deletion if Storage Order is Unimportant:

Find index i such that A[i ] = v or report that v is not in the array.

Set A[i ] = A[numElements − 1]; decrement numElements − 1.

Worst-Case Cost: Θ(n) (Θ(1) to delete, but Θ(n) to find v)

Deletion if Storage Order is Important

Find index i such that A[i ] = v or report that v is not in the array.

“Shift” all elements at index i + 1 to numElements − 1 one position
“down”; decrement numElements.

Worst-Case Cost: Θ(n) (deleting element 0)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 17 / 40

Arrays Dynamic Arrays

Dynamic Arrays

Lengths of dynamic arrays can be changed as needed

Java (and a few other languages) support dynamic arrays

In Java, a dynamic array is called an ArrayList

Older versions provided a Vector instead (still supported, but not
recommended).

Reasons To Use a Dynamic Array:

it may be difficult to derive a rigorous upper bound on the number of
elements that will be stored in the array,

extra memory is not available (or expensive), so allocating a large
static array with an excessive number of unused entries is not feasible.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 18 / 40

Arrays Dynamic Arrays

Initialization of a Dynamic Array

An operation like

ArrayList<String> SDArray =
new ArrayList<String>();

declares the name of a dynamic array (in this case, SDArray), and sets
the base type of the dynamic array (in this case, String). Similarly,

ArrayList<Integer> SDIntegers =
new ArrayList<Integer>();

creates a new dynamic array with base type Integer.

Note: ArrayLists must store Object’s instead of primitive data types,
so we must “wrapper classes” for primitive types to define dynamic arrays
in Java that contain them.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 19 / 40

Arrays Dynamic Arrays

Accessing and Modifying a Dynamic Array

Every dynamic array in Java is an Object, and you must access or modify
it by calling one of its methods — using the usual syntax for method calls.

Example: To find the current size of a dynamic array SDIntegers (that
is, its current number of entries), you should call its size method: The
statement

s = SDIntegers.size();

would set the value of the variable s to be the size of this dynamic array.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 20 / 40



Arrays Dynamic Arrays

Adding an Entry to a Dynamic Array

Java uses static arrays to implement a dynamic array.

Consider an operation that increases the size of a dynamic array; if this
corresponds to the use of a single ArrayList method then the size
increases by one.

Case: The size of the ArrayList is less than or equal to the the length
of the underlying static array, after the operation.

This is case is easy! Carry out the operation in (pretty much) exactly the
same way as you would if you were working with a static array.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 21 / 40

Arrays Dynamic Arrays

Adding an Entry to a Dynamic Array

Case: The static array was “full” (that is, completely used) before this
operation, so that the size of our ArrayList should now be one more
than the length of the static array that currently represents it.

In this case we must replace the static array currently being used with
another static array, with the same base type, and with length newLength
— where this value is strictly greater than the length of the static array
that is being replaced.

The method System.arraycopy can be used to do this quickly.

Once this is done (and references to the old static array are replaced with
references to the new one) the ArrayList operation can proceed as in
the first case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 22 / 40

Arrays Dynamic Arrays

Adding an Entry to a Dynamic Array

Q: What is a good choice for the length, newLength, of the new array?

Bad Idea: Set newLength to be one more than the length of the old
static array (or greater by a small constant)

A Much Better Idea: Increase the length by a constant factor: in
particular, it is a good idea to set newLength to be twice as large as the
old static array.

Why?

amortized cost is Θ(1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 23 / 40

Linked Lists Simple Singly Linked Lists

Linked Data Structures

Consist of zero or more nodes that are allocated as-needed and that are
connected via references or pointers

Advantage: Structures can grow as needed, unlike static arrays —
and at low cost, unlike dynamic arrays

Disadvantage: Constant-time direct access (by index or position) is
not supported

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 24 / 40



Linked Lists Simple Singly Linked Lists

Singly Linked Lists

Brief Description: Nodes are Linearly Connected — each has a value and
a reference to its successor node

Attributes:

head: Reference to the first node in the list

Example:

a c x g k

head tail

Optional Attributes:

tail: Reference to the last node in the list (optional)

length: Number of nodes in the list

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 25 / 40

Linked Lists List Operations

Initialization of a Linked List

How To Do This:

Set the head (and tail) to be null

Set length to be 0.

Worst-Case Cost: Θ(1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 26 / 40

Linked Lists List Operations

Traversal of a Linked List

How To Do This:

Initialize a “cursor” to the head node

While the cursor is not null

“Visit” or “process” the node pointed to by the cursor.
Set cursor to its successor.

Worst-Case Cost: Θ(n) (constant number of operations done per node)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 27 / 40

Linked Lists List Operations

Application: Finding a Given Element

Searching by Value:

How To Do This:

Traverse the list from the beginning; halt once the value being searched
for is found.

Worst-Case Cost: Θ(n) (worst-case requires traversing the entire list)

Searching by Position:

How To Do This:

Traverse the list from the beginning; halt once the desired position is
reached.

Worst-Case Cost: Θ(n) (worst-case is searching for the last element
in the list)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 28 / 40



Linked Lists List Operations

Replacing an Element of a Singly Linked List

How To Do This:

Traverse the list from the beginning; halt once the value to be
replaced is found.

Overwrite the value stored in the current node with the new value.

Worst-Case Cost: Θ(n) (cost of finding the element to be replaced
dominates)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 29 / 40

Linked Lists Operations for Storage of Sets

Insertion of an Element into a Set (Case 1)

Case 1: Storage Order is Unimportant and the New Element is
Guaranteed Not To Be in Set

How To Do This:

Create a new node whose value is the element to insert, and whose
successor is set to the head node.

Set the head to the new node.

Worst-Case Cost: Θ(1) (constant number of steps)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 30 / 40

Linked Lists Operations for Storage of Sets

Insertion of an Element (Case 2)

Case 2: Storage Order is Unimportant But the Element Might Be in the
Set Already

How To Do This:

Traverse the entire list to check whether the element is already in the
list. Cost: Θ(n)

If the element is not in the list, insert it at the head. Cost: Θ(1)

Worst-Case Cost: Θ(n) (dominated by the cost of the search)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 31 / 40

Linked Lists Operations for Storage of Sets

Insertion of an Element (Case 3)

Case 3: If Storage Order is Important

How To Do This:

Traverse the list from the beginning to find node (cursor) that should
come before the new node.

Set the new node’s successor field to the successor field of the cursor.

Set the cursor’s successor field to the new node.

A Complication:

If the new node goes at the beginning of the list, its successor is the
current head, after which head must be changed to the new node

Worst-Case Cost: Θ(n) (inserting at the tail)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 32 / 40



Linked Lists Operations for Storage of Sets

Deletion of an Element

How To Do This:

Traverse the list from the beginning to locate the node to delete
(target) and its predecessor.

Set the predecessor’s successor node to the target’s successor node
(thus “unlinking” the node pointed to by target from the list).

Need the tail’s predecessor in addition to the tail itself in this case.

A Complication:

Deleting the head must be handled separately.

Worst-Case Cost: Θ(n) (deleting the last element in the list)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 33 / 40

Linked Lists Other Types of Lists

Doubly Linked Lists

Variation: Nodes now have references to their predecessors as well as
their successors

head tail

a c x g k

Advantages:

Coding simplified (node’s predecessor easily found)

Some operations are now much more efficient

Disadvantage:

extra storage overhead for the additional predecessor references

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 34 / 40

Linked Lists Other Types of Lists

Circular Lists

Variation over Doubly-Linked List: Last node points to the first node!

head

a c x g k

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 35 / 40

Linked Lists Linked Lists in Java

Linked Lists in Java

A class

LinkedList<E>

is included as part of the package java.util.

This class is implemented as a doubly linked list, and it implements the

List<E>

interface.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 36 / 40



Conclusion

Arrays versus Linked Lists

Reasons to Use an Array Instead of a Linked List

max number of elements is known ahead of time

application requires frequent access to elements in the middle (or by
index)

Reasons to Use a Linked List Instead of an Array

number of elements is not known, or will change frequently

application requires mostly sequential access

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 37 / 40

Conclusion

Additional Programming Support in Java

An Iterator is an object associated with any Collection — including
any LinkedList .

This provides a kind of “marker” or “placeholder” that can be used, along
with an enhanced for statement, to examine the elements of the
associated Collection, one by one.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 38 / 40

Conclusion

Additional Programming Support in Java

Q: Why Would You Need This?

A: Remember “information hiding” — and “programming by contract!”

This allows us to implement many of the algorithms that we could, if we
had access to things like “pointers” to nodes in a linked list — without
assuming anything about the internal representation of the objects we work
with — and without needing direct access to private methods or data.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 39 / 40

Recommended Reading

Recommended Reading

Data Structures & Algorithms in Java

by Robert Lafore

Chapter 2 (arrays) and Chapter 5 (linked lists, iterators)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 40 / 40


	Objectives
	Arrays
	Static Arrays
	Array Operations
	Operations for Storage of Sets
	Dynamic Arrays

	Linked Lists
	Simple Singly Linked Lists
	List Operations
	Operations for Storage of Sets
	Other Types of Lists
	Linked Lists in Java

	Conclusion
	Recommended Reading

