
Computer Science 331
Analysis of Algorithms

Mike Jacobson

Department of Computer Science
University of Calgary

Lectures #7-8

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 1 / 26

Outline

1 Objective

2 Types of Analysis

3 Worst-Case Analysis of Running Time
A Single Statement
A Sequence of Subprograms
A Conditional Statement
A Loop
A Nested Loop
A Simple Recursive Program
Lower Bounds

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 2 / 26

Objective

Measuring Efficiency

What sorts of measures could we use? The following are all (sometimes)
important:

Running Time — no one wants to wait too long for programs to
execute

Memory Used by Data (Storage Space) — time is (sort of)
unconstrained, but any computer can run out of memory

Memory Used by Code — an issue if a program is to be stored on a
low-memory device (like a smart card)

Time to Code —- programmers must be paid and software
development usually has deadlines!

Our focus will be on running time and storage space.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 3 / 26

Objective

How Do We Measure Efficiency?

How can we compare algorithms or programs?

1 Run the Code and Time the Execution.
Problem: Execution time is influenced by many factors:

Hardware (How fast is the CPU? How many of them?)
Compiler and System Software (Which OS?)
Simultaneous User Activity (Potentially affected by the time of day
when the program was executed)
Choice of Input Data (Running times can vary on inputs, even inputs
of the same “size”)
Programmer’s Skill

2 Analyze the Code
Advantage: Only influenced by choice of data
Disadvantage: Can be quite difficult!

We typically try to do both (analysis supported by execution timings).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 4 / 26



Objective

What Will We Measure?

Most of the time, in this course, running time and storage space will be
measured in an abstract machine-independent way.

Running Time:

Number of primitive operations or “steps” (programming language
statements) used

Ignores: different costs between operations (eg. multiply vs. add)

Storage Space:

Number of words of machine memory used, assuming each word can
store the same (fixed) number of bits

Ignores: memory hierarchy differences, eg. cache vs. main memory

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 5 / 26

Types of Analysis

How Do We Wish To Measure Resources?

We will try to measure the amount of resources (time or space) used as a
function of the “input size.” (defined in various ways, depending on the
type of input considered).

Example: if the input is an array, the appropriate measure of input size is
(usually):

array length, i.e., number of elements

Example: if the input is a single integer, which can be virtually as large as
we want, the appropriate measure of input size is:

the bit-length of the integer, i.e., number of bits in its binary
representation

Complication: executions of a program on different inputs with the same
size frequently have different costs!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 6 / 26

Types of Analysis

Worst-Case Analysis

Consider the maximal amount of resources (such as longest running time)
used by the algorithm, on any input of a given size

Advantages of This Type of Analysis:

upper bound on running time (guarantee that the algorithm will not
take any longer for any inputs of the given size)

for some algorithms, worst-case occurs fairly often (eg. searching an
array for an element not in it)

Disadvantage of This Type of Analysis:

for some cases, the worst case rarely occurs (eg. array in reverse order
is the worst case for one variation of quicksort)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 7 / 26

Types of Analysis

Average-Case Analysis

Consider the average (or “expected”) amount of resources (such as
average running time) used by the algorithm, for an input of a given size

Advantage of This Type of Analysis:

captures resource consumption for typical inputs

Disadvantages of This Type of Analysis:

executions on some inputs of the given size can take much longer
than the average case

may be difficult to determine what the average case actually is —
some assumption about the distribution of the inputs is always needed

In some, but not all cases, the worst-case and average-case running times
(or amount of storage space used) are approximately the same.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 8 / 26



Types of Analysis

Other Kinds of Analysis

Best-case Analysis:

minimal amount of resources (such as shortest running time) used by
the algorithm, on any input of a given size

occasionally of interest, but usually together with other measures (eg.
see whether best and worst cases running times are close)

Amortized Analysis:

ratio of total cost of a sequence of operations to the number of
operations in the sequence

similar to average case, except that no assumptions about input
distribution are required

mostly beyond scope of the course, but some results will be mentioned

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 9 / 26

Worst-Case Analysis of Running Time

Objective and Strategy

Objective: use code (or pseudocode) to estimate the worst-case running
time of a program (or algorithm).

Useful Values:

Worst-case running time (exact)

Upper and lower bounds on worst-case running time (easier, often
sufficient)

Strategy: consider subprograms . . .

beginning with individual statements . . .

then considering progressively larger subprograms . . .

until the whole program has been considered.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 10 / 26

Worst-Case Analysis of Running Time A Single Statement

Case: Program is a Single Statement

Example: x := 1

Amount to charge:

1 unit (eg. single arithmetic/Boolean operation, comparison, or
assignment)

Example: x := y := 1

Amount to charge:

2 units (one per assignment)

be careful with compound statements

one line does not always equal one unit!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 11 / 26

Worst-Case Analysis of Running Time A Sequence of Subprograms

Case: Program is a Sequence of Subprograms

Structure to Consider: S1; S2

Worst-Case Running Time: If

worst-case running time of S1 is T1, and

worst-case running time of S2 is T2,

then

worst-case running time of entire program is at most: T1 + T2

Explanation (upper bound because...):

worst-case input to S1 may not yield a worst-case input to T2

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 12 / 26



Worst-Case Analysis of Running Time A Conditional Statement

Case: Program is a Conditional Statement

Structure to Consider:

if c then
S1

else
S2

end if

Worst-Case Running Time: if

worst-case running time to evaluate c is T ,

worst-case running time of S1 is T1, and

worst-case running time of S2 is T2,

then

worst-case running time of program is: T + max(T1, T2)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 13 / 26

Worst-Case Analysis of Running Time A Loop

Case: Program is a Loop

Structure to Consider:

while G do
S

end while

We need to know:

the worst-case cost to evaluate G

the worst-case cost to execute S

the maximum number of executions of the loop body

Problem:

it is not even clear that this will halt!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 14 / 26

Worst-Case Analysis of Running Time A Loop

First Objective: Counting Executions of the Loop Body

Recall that a Loop Variant is an integer-valued function fL of variables
such that

the value of fL decreases by at least 1 each time loop body is
executed;

the test G is false if the value of fL is ≤ 0

The existence of a loop variant implies that the loop terminates if each
evaluation of G and each execution of the loop body terminates.

Useful fact: number of executions of loop body is less than or equal to
the value of fL immediately before execution of the loop begins

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 15 / 26

Worst-Case Analysis of Running Time A Loop

Next Objective: Bounding Total Running Time

Suppose:

Loop body is executed at most k times

Worst-case cost for each evaluation of the loop test G is ≤ T1

Worst-case cost for each execution of the loop body S is ≤ T2

Then:

Total cost for all evaluations of test G is at most: (k + 1)T1

Total cost for all executions of loop body is at most: kT2

Therefore, the total cost to execute the loop is at most:
(k + 1)T1 + kT2

If cost of jth iteration of S is T2(j) : (k + 1)T1 +
k∑

j=1

T2(j)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 16 / 26



Worst-Case Analysis of Running Time A Loop

Example

Suppose A is an integer array with length n, key is an integer, and the
following code is executed.

i := 0
while ((i < n) and (A[i ] <> key)) do

i := i + 1
end while

Loop Variant for this program’s loop: f (n, i) = n − i

i increases after each iteration, so f (n, i) decreases

f (n, i) ≤ 0 if i ≥ n and the loop terminates if i ≥ n

What about 2nd condition in test? ignore (doesn’t affect worst case)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 17 / 26

Worst-Case Analysis of Running Time A Loop

Example, Continued

Maximum number of executions of the loop body:

f (n, 0) = n − 0 = n

Worst-case cost to evaluate test:

3 units (two comparisons, one Boolean operation), or constant c1

Worst-case cost for an execution of the loop body:

2 units (one addition, one assignment), or constant c2

Upper bound on worst-case cost to execute the loop:

3(n + 1) + 2n = 5n + 3, or

c1(n + 1) + c2n = d1n + d2 for constants d1, d2

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 18 / 26

Worst-Case Analysis of Running Time A Nested Loop

Case: Program is a Nested Loop

Structure to Consider:

while G1 do
while G2 do

S
end while

end while

Method:

compute worst-case cost of inner loop as above

compute cost of outer loop using computed inner loop cost as the
worst-case cost of the outer loop’s body

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 19 / 26

Worst-Case Analysis of Running Time A Simple Recursive Program

Case: Program Calls Itself a Constant Number of Times

Example: Fibonacci Number Program

int Fib(n)

if n == 0 then
return 0

else if n == 1 then
return 1

else
return Fib(n − 1) + Fib(n − 2)

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 20 / 26



Worst-Case Analysis of Running Time A Simple Recursive Program

Objective: Writing an Expression for the Running Time

Let T (n) be the number of steps used on input n. Then

T (n) ≤


2 if n = 0,

3 if n = 1,

6 + T (n − 1) + T (n − 2) if n ≥ 2.

This is an example of a recurrence relation:

T (n) expressed using the same function T evaluated at smaller
inputs

Explicit (non-recursive) values of T given for small inputs n (base
cases)

T (2) ≤ 6 + T (1) + T (0) = 11, T (3) ≤ 6 + T (2) + T (1) = 20, etc...

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 21 / 26

Worst-Case Analysis of Running Time A Simple Recursive Program

Analysis of Recursive Programs

The following exercises on computing bounds on T (n) can be solved using
mathematical induction.

Exercises:

1 Use the above information to prove that

T (n) ≤ 6× 2n − 6

for every integer n ≥ 0.

2 Use the above information to prove that

T (n) ≤ 6× fib(n + 1)− 6

for every integer n ≥ 0.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 22 / 26

Worst-Case Analysis of Running Time Lower Bounds

Finding a Lower Bound

In order to prove that the worst-case running time of a program P is at
least T , for input size N (for a fixed N):

Find a valid input I of size N (where “valid” means that P’s
precondition is satisfied)

Count the number of steps used by P on input I

If this number is greater than or equal to T then you have proved
what we want!

Why This Works:

worst-case cannot be less than the running time of any particular
input

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 23 / 26

Worst-Case Analysis of Running Time Lower Bounds

Finding a Lower Bound, Continued

In order to prove that the worst-case running time of a program P is at
least T (n), for a function T (n):

Find a collection I1, I2, I3, I4, . . . of inputs, where Ii is a valid input of
size i for all i ≥ 1

Show that the number of steps used by P on input Ii is greater than
or equal to T (i), for every integer i ≥ 1

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 24 / 26



Worst-Case Analysis of Running Time Lower Bounds

A Common Mistake

Some people try to prove that the worst-case running time of a program P
is at most T (n), for a function T (n), by doing the following:

They give a collection I1, I2, I3, . . . of inputs, where Ii is a valid input
of size i for all i ≥ 1

They show (generally, correctly) that the number of steps used by P
on input Ii is less than or equal to T (i), for every integer i ≥ 1.

They then conclude that the worst-case running time of P on inputs
of size n is at most T (n) (for all n)

Why This is Incorrect:

does not prove that there are no inputs for which the running time is
larger

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 25 / 26

References

Further Reading . . .

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein

Introduction to Algorithms

available as an ebook

includes much more material about this topic

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 26 / 26


	Objective
	Types of Analysis
	Worst-Case Analysis of Running Time
	A Single Statement
	A Sequence of Subprograms
	A Conditional Statement
	A Loop
	A Nested Loop
	A Simple Recursive Program
	Lower Bounds

	References

