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Introduction What is a Proof of Correctness?

How Do We Specify a Computational Problem?

Recall: a computational problem is specified by one (or more) pairs of
preconditions and postconditions.

Precondition: A condition that one might expect to be satisfied when
the execution of a program begins. This generally involves the
algorithm’s inputs as well as initial values of global variables.

Postcondition: A condition that one might want to be satisfied when
the execution of a program ends. This might be

A set of relationships between the values of inputs (and the values of
global variables when execution started) and the values of outputs (and
the values of global variables on a program’s termination), or
A description of output generated, or exception(s) raised.
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Introduction What is a Proof of Correctness?

Example: Specification of a “Search” Problem

Precondition P1: Inputs include

n: a positive integer

A: an integer array of length n, with entries

A[0],A[1], . . . ,A[n-1]

key: An integer found in the array (ie, such that A[i] = key for at
least one integer i between 0 and n-1)

Postcondition Q1:

Output is the integer i such that 0 ≤ i < n, A[j] 6= key for every
integer j such that 0 ≤ j < i, and such that A[i] = key

Inputs (and other variables) have not changed

This describes what should happen for a “successful search.”
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Introduction What is a Proof of Correctness?

Example: Specification of a “Search” Problem

Precondition P2: Inputs include

n: a positive integer

A: an integer array of length n, with entries

A[0],A[1], . . . ,A[n-1]

key: An integer not found in the array (ie, such that A[i] 6= key for
every integer i between 0 and n-1)

Postcondition Q2:

A notFoundException is thrown

Inputs (and other variables) have not changed

This describes what should happen for an “unsuccessful search.”
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Introduction What is a Proof of Correctness?

Example: Specification of a “Search” Problem

A problem can be specified by multiple precondition-postcondition pairs

(P1, Q1); (P2, Q2); . . . , ; (Pk , Qk)

as long as it is not possible for more than one of the preconditions

P1, P2, . . . , Pk

to be satisfied at the same time.

For example, if P1, Q1, P2, and Q2 are as in the previous slides then the
pair of precondition-postcondition pairs

(P1, Q1); (P2, Q2)

could specify a “search problem” in which the input is expected to be any
positive integer n, integer array A of length n, and integer key.
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Introduction What is a Proof of Correctness?

When is an Algorithm Correct?

Suppose, first, that a problem is specified by a single
precondition-postcondition pair (P, Q).

An algorithm (that is supposed to solve this problem) is correct if it
satisfies the following condition: If

inputs satisfy the given precondition P and

the algorithm is executed

then

the algorithm eventually halts, and the given postcondition Q is
satisfied on termination.

Note: This does not tell us anything about what happens if the algorithm
is executed when P is not satisfied.
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Introduction What is a Proof of Correctness?

When is an Algorithm Correct?

Suppose, next, that k ≥ 2 and that a problem is specified by a sequence of
k precondition-postcondition pairs

(P1, Q1); (P2, Q2); . . . ; (Pk , Qk)

where it is impossible for more than one of the preconditions to be
satisfied at the same time.

An algorithm (that is supposed to solve this problem) is correct if the
following is true for every integer i between 1 and k : If

inputs satisfy the given precondition Pi and

the algorithm is executed

then

the algorithm eventually halts, and the given postcondition Qi is
satisfied on termination.
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Introduction What is a Proof of Correctness?

When is an Algorithm Correct?

A consequence of the previous definitions: Consider a problem specified by
a sequence of k precondition-postcondition pairs

(P1, Q1); (P2, Q2); . . . ; (Pk ; Qk).

Then an algorithm that is supposed to solve this problem is correct if and
only if it is a correct solution for each of the k problems that are each
specified by the single precondition-postcondition pair Pi and Qi , for i
between 1 and k .

=⇒ It is sufficient to consider problems that are specified by a single
precondition and postcondition (and we will do that, from now on).
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Introduction Applications

Why are Proofs of Correctness Useful?

Who Generates Proofs of Correctness?

Algorithm designers (whenever the algorithm is not obvious). Other
people need to see evidence that this new algorithm really does solve
the problem!

Note that testing cannot do this (in general).

Who Uses Proofs of Correctness?

Anyone coding, testing, or otherwise maintaining software
implementing any nontrivial algorithm need to know why (or how )
the algorithm does what it is supposed in order to do their jobs well.
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Proof of Correctness Partial Correctness

One Part of a Proof of Correctness: Partial Correctness

Partial Correctness: If

inputs satisfy the precondition P, and

algorithm or program S is executed,

then either

S halts and its inputs and outputs satisfy the postcondition Q

or

S does not halt, at all.

Generally written as
{P} S {Q}

Note: Detailed proofs rely heavily on discrete math and logic.
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Proof of Correctness Partial Correctness

How to Prove Partial Correctness of Algorithms?

Consider algorithm S :

Divide S into sections S1; S2; . . . ; SK

assignment statements
loops
control statements (i.e., if-then-else)
(other programming constructs)

Identify intermediate assertions Ri so that

{P} S1 {R1}
{R1} S2 {R2}
...
{RK−1} SK {Q}

After proving each of these, we can then conclude that

{P} S1; S2; . . . ; SK {Q}
equivalently, {P} S {Q}
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Proof of Correctness Partial Correctness

Example: Proof of Partial Correctness

Problem Definition: Finding the largest entry in an integer array.

Precondition P: Inputs include

n: a positive integer

A: an integer array of length n, with entries A[0], . . . ,A[n-1]

Postcondition Q:

Output is the integer i such that 0 ≤ i < n, A[i] ≥ A[j] for every
integer j such that 0 ≤ j < n

Inputs (and other variables) have not changed
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Proof of Correctness Partial Correctness

Example: Pseudocode

int FindMax(A, n)

i = 0
j = 1
while (j < n) do

if A[j ] > A[i ] then
i = j

end if
j = j + 1

end while
return i
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Proof of Correctness Partial Correctness

Example: Intermediate Assertion

Intermediate Assertion I :

n: a positive integer

A: an integer array of length n

i = 0 and j = 1

Divide into Sections:

{P}
i = 0, j = 1
{I}
while (j < n) do

if A[j ] > A[i ] then
i = j

end if
j = j + 1

end while
{Q}
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Proof of Correctness Partial Correctness

Example: Proof of each Section

Prove the correctness of each section of the algorithm using the
intermediate assertion I :

1 First Section: {P} i = 0; j = 0 {I}
correctness is trivial

2 Second Section: {I} while . . .end while {Q}
proof is needed

=⇒ In CPSC 331, we focus on proving correctness of simple loops and
recursive programs.
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Proof of Correctness Partial Correctness

Correctness of Loops

Problem: Show that

{P} while G do S end while {Q}

Observation: There is generally some condition that we expect to hold at
the beginning of every execution of the body of the loop. Such a condition
is called a loop invariant.

A condition R is a Loop Invariant if:

1 Base Property: P implies that R is True before the first iteration of
the loop

2 Inductive Property: If R is True before an iteration and the loop
guard G is True, then R is True after the iteration
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Proof of Correctness Partial Correctness

Example: Loop Invariant

Claim: Assertion R is a loop invariant:

1 ≤ j ≤ n

A[i] ≥ A[k] for 0 ≤ k < j

Proof.
1 Base Property: Before the first iteration of the loop:

i = 0 and j = 1; A[0] ≥ A[0]

2 Inductive Property: If R is True before an iteration and j < n, then
show that 1 ≤ jafter ≤ n and A[iafter ] ≥ A[0], . . . , A[jafter − 1]

jafter = jbefore + 1⇒ 1 ≤ jafter ≤ n

if A[jbefore ] > A[ibefore ] ⇒ iafter = jbefore and
A[iafter ] ≥ A[0], . . . , A[jbefore ]⇒ A[iafter ] ≥ A[0], . . . , A[jafter − 1]

if A[jbefore ] ≤ A[ibefore ] ⇒ iafter = ibefore and
A[iafter ] ≥ A[0], . . . , A[jbefore ]⇒ A[iafter ] ≥ A[0], . . . , A[jafter − 1]
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Proof of Correctness Partial Correctness

Correctness of Loops: Summary

Problem: Prove that

{P} while G do S end while {Q}

Solution:
1 Identify a loop invariant R and prove:

Base Property: P implies that R is True before the first iteration of
the loop
Inductive Property: If R is True before an iteration and the loop
guard G is True, then R is True after the iteration

Note: essentially a proof by induction that the loop invariant holds
after zero or more executions of the loop body.

2 Prove the correctness of the postcondition:

if the loop terminates after zero or more iterations, the Truth of R
implies that Q is satisfied

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #2-4 19 / 38

Proof of Correctness Partial Correctness

Mathematical Induction

Problem: For all integers k ≥ k0, prove that property P(k) is True.

Proof by Induction:

1 Base Case: Show that P(k0) is True
2 Inductive Step: Show that if P(k) is True for some arbitrary integer

k ≥ k0 (the induction hypothesis), then P(k + 1) is True.

choose an arbitrary k ≥ k0

show that P(k + 1) is True if P(k) is True
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Proof of Correctness Partial Correctness

Example: Mathematical Induction

Claim: 22n − 1 is divisible by 3 for all integers n ≥ 1.

Proof by Induction.

Let P(n): 22n − 1 is divisible by 3

1 Base Case:

P(1): 22 − 1 = 3 is divisible by 3.

2 Inductive Step:
Assume P(k) is True for some k ≥ 1, thus 22k − 1 mod 3 = 0

Show that P(k + 1) is True:

22(k+1) − 1 mod 3 = 22k+2 − 1 mod 3 = 4 · 22k − 1 mod 3

= 3 · 22k + 22k − 1 mod 3 = 0
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Proof of Correctness Partial Correctness

Example 1: Partial Correctness of Loops

Prove the partial correctness of the following algorithm.

Precondition: n and m are positive integers

Postcondition: n and m are unchanged and p = n× m

Prod(m, n)

i = 0
p = 0
while i < n do

i = i + 1
p = p + m

end while
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Proof of Correctness Partial Correctness

Example 1, Continued

Claim: Prod(n,m) is partially correct

Proof.

Proof that 0 ≤ i ≤ n and p = i ×m is a loop invariant:

1 True before first iteration: i = 0 and p = 0
2 If True before an iteration and i < n then True after the iteration:

Before the iteration: 0 ≤ ibefore < n and pbefore = ibefore ×m
After the iteration: iafter = ibefore + 1⇒ 0 ≤ iafter ≤ n and
pafter = pbefore + m = ibefore ×m + m = iafter ×m

Proof of partial correctness:

preconditions and initial assignment statements imply the loop
invariant (trivially)

upon termination: i = n and p = n ×m⇒ Q
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Proof of Correctness Partial Correctness

Example 2: Partial Correctness of Loops

Prove the correctness of the following algorithm.

Precondition: n is a positive integer

Postcondition: n is unchanged and s =
n∑

j=1

j

Sum(n)

i = 1
s = 1
while i < n do
i = i + 1
s = s + i

end while

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #2-4 24 / 38



Proof of Correctness Partial Correctness

Example 2, Continued

Claim: Sum(n) is partially correct

Proof.

Proof that 1 ≤ i ≤ n and s =
i∑

j=1

j is a loop invariant:

1 True before first iteration: i = 1 and s = 1
2 If True before an iteration and i < n then True after the iteration:

Before the iteration: 1 ≤ ibefore < n, and sbefore =

ibefore∑
j=1

j

After the iteration: iafter = ibefore + 1⇒ 1 ≤ iafter ≤ n and

safter = sbefore + iafter =

ibefore∑
j=1

j + iafter =

iafter∑
j=1

j

Proof of partial correctness: similar to before

upon termination: i = n and s =
∑n

j=1 j ⇒ Q

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #2-4 25 / 38

Proof of Correctness Termination

Another Part: Termination

Termination: If

inputs satisfy the precondition P, and

algorithm or program S is executed,

then

S is guaranteed to halt!

Note: Partial Correctness + Termination ⇒ Total Correctness!

Partial Correctness and Termination are often (but not always) considered
separately because . . .

Different — independent — arguments are used for each

Sometimes one condition holds, but not the other! Then the
algorithm is not totally correct. . . but something interesting can still
be established.
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Proof of Correctness Termination

Termination of Loops

Problem: Show that if the precondition P is satisfied and the loop

while G do S end while

is executed, then the loop eventually terminates.

Suppose that a loop invariant R for the precondition P and the above loop
has already been found. You should have done this when proving the
partial correctness of this loop — also useful to prove termination.

Proof Rule: To establish the above termination property, prove each of the
following.

1 If the loop invariant R is satisfied and the loop body S is executed
then the loop body terminates.

2 The loop body is only executed a finite number of times.
(Proof technique is based on the concept of a Loop Variant.)
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Proof of Correctness Termination

Termination of Loops, Continued

Definition: A loop variant for a loop

while G do S end while

is a function fL from program variables to the set of integers that satisfies
the following additional properties:

1 The value of fL is decreased by at least one every time the loop
body S is executed

2 If the value of fL is less than or equal to zero then the loop guard G
is False (ie., the loop terminates)

Note: The initial value of fL is an upper bound for the number of
executions of the loop body before the loop terminates.
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Proof of Correctness Termination

Termination of Loops, Continued

Problem: Prove that if the precondition P is satisfied and the loop

while G do S end while

is executed, then the loop eventually terminates.

Solution:

1 Show that if the loop invariant is satisfied and the loop body is
executed then the loop body terminates

2 Identify a loop variant fL:

fL is an integer valued function

The value of fL is decreased by at least one every time the loop body is
executed

If the value of fL is less than or equal to zero then the loop guard
is False
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Proof of Correctness Termination

Example 1: Termination of Loops

Claim: Prod(m, n) terminates.

Proof.
1 Loop body always terminates
2 Loop variant: f (n, i) = n − i

f (n, i) is an integer valued function
after every iteration, i increases by 1 and thus f (n, i) decreases by 1
if f (n, i) ≤ 0 then i ≥ n and the loop terminates
(number of iterations = f (n, 0) = n)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #2-4 30 / 38

Proof of Correctness Termination

Example 2: Termination of Loops

Claim: Sum(n) terminates.

Proof.
1 Loop body always terminates
2 Loop variant: f (n, i) = n − i

f (n, i) is an integer valued function
after every iteration, i increases by 1 and thus f (n, i) decreases by 1
if f (n, i) ≤ 0 then i ≥ n and the loop terminates
(number of iterations = f (n, 1) = n − 1)
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Proof of Correctness Recursive Algorithms

Correctness of Recursive Algorithms

Suppose method A calls itself (but does not call any other methods).

In this case, it is often possible to prove the correctness of this method
using strong mathematical induction, proceeding by induction on the
“size” of the inputs.

Base Case: base cases of the recursive algorithm

Inductive Step: algorithm is correct for all inputs of size “up to” n,
show that it is correct for inputs of size n + 1

Proof proceeds by proving correctness while assuming the induction
hypothesis (i.e., every recursive call returns the correct output).
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Proof of Correctness Recursive Algorithms

Strong Mathematical Induction

Problem: For all integers k ≥ k0, prove that property P(k) is True.

Proof by Strong form of Induction:

1 Base Case: Show that P(k0) is True
2 Inductive Step: Show that if P(i) is True for all integers k0 ≤ i ≤ k

then P(k + 1) is True.

choose an arbitrary k ≥ k0

show that P(k + 1) is True if P(k), P(k − 1), . . . , P(k0) are True
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Proof of Correctness Recursive Algorithms

Example: Partial Correctness of Recursive Algorithms

Prove the correctness of the following algorithm.

Precondition: i is a positive integer

Postcondition: the value returned is the i th Fibonacci number, Fi

long Fib(i)

if i == 0 then
return 1

end if
if i == 1 then

return 1
end if
return Fib(i-1) + Fib(i-2)
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Proof of Correctness Recursive Algorithms

Example, Continued

Claim: Fib(i) is partially correct.

Proof.
1 Base Case: The algorithm is partially correct for i = 0 and i = 1

2 Inductive Step: Assume that Fib(i) for i = 0, 1, . . . , k (k ≥ 1)
returns the i-th Fibonacci number denoted by Fi . Show that
Fib(k + 1) returns the (k + 1)-th Fibonacci number, Fk+1.

Since k + 1 > 1, we have:

Fib(k + 1) = Fib(k) + Fib(k − 1)

Using the induction hypothesis, it follows that

Fib(k + 1) = Fk + Fk−1 = Fk+1
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Final Notes

Applications to Java Development

A proof of correctness of an algorithm includes detailed information about
the expected state of inputs and variables at every step during the
computation.

This information can be included in documentation as an aid to other
developers. It also facilitates effective testing and debugging.

Self-study exercises can be used to learn more about this.
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Final Notes

Can This All Be Automated?

The following questions might come to mind.

Q: Is it possible to write a program that decides whether a
given program is correct, providing a proof of correctness
of the given program, if it is?

A: No! the simpler problem of determining whether a given
program halts on a given input is “undecidable:” It has
been proved that no computer program can solve this
problem!

Q: Can a computer program be used to check a proof of
correctness?

A: See our courses in “Artificial Intelligence” for informa-
tion about this!
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Final Notes Additional References

References

Recommended References:

Susanna S. Epp
Discrete Mathematics with Applications, Third Edition
See Section 4.5

Michael Soltys
An Introduction to the Analysis of Algorithms
Chapter 1 contains an introduction to proofs of correctness and is
freely available online!
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