Outline

Computer Science 331 @ Iterators

Binary Tree Traversals @ Java Interfaces

Mike Jacobson 9 Tree Traversals
@ Types of Traversals

Department of Computer Science
University of Calgary

© Binary Search Tree Iterators
Supplemental Material @ Inorder Traversal Iterator
@ Other Traversal lterators

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 1/13 Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 2 /13

Iterators Java Interfaces Iterators Java Interfaces

The Java Iterator Interface The Iterable Interface

An iterator is a program component that enables you to step through Java's Iterable interface specifies one function:

(traverse) a collection of data sequentially e Iterator<T> iterator() — returns an iterator object for the data

@ each item is considered exactly once structure implementing this interface
o typically does not permit the data to be modified
Idea: data structures that implement Iterable provide an easy

Java's Tterator<T> interface defines the following functions: mechanism to traverse all currently-stored objects
@ boolean hasNext() — true if there is another entry to return

Why this is useful:

o T next() — returns the next entry (type T) in the iteration and _ _
advances the iterator by one position @ not all data structures are easily traversed (eg. with a for-loop)

o void remove() — (optional) removes last item returned o different types (orders) of traversals may be possible

@ provides an identical interface for traversing any data structure that

next throws a NoSuchElementException if there are no items left to r
implements Iterable

return (enter collection has been traversed)

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 3/13 Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 4 /13



Iterators Java Interfaces

Example: Using a BST lterator

public class BST<E,V> implements Iterable<V> {
public Iterator<E> iterator()
{ return new BSTIterator<E,V>(); }

private class BSTIterator<E,V> implements Iterator<E>

{1}

BST<E,V> myTree;
Iterator<E> myIlterator = myTree.iterator();
while (myIterator.hasNext()) {

E nextKey = (E) myIterator.next();

// do something with nextKey
}

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material

Tree Traversals ~ Types of Traversals

Depth-first Traversals

Preorder (parents before children):

@ order of visitation: root, left subtree (recursively), right subtree
(recursively)

Inorder:

e order of visitation: left subtree (recursively), root, right subtree
(recursively)

Postorder (children before parents):

o order of visitation: left subtree (recursively), right subtree
(recursively), root

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material

AT

7/ 13

Tree Traversals ~ Types of Traversals

Types of Traversals

Two main strategies, total of four variations

@ each visits tree nodes in a different order

Depth-first:

@ includes preorder, inorder, and postorder traversals

@ visit a tree's components (root, left subtree, right subtree) in some

specific order

Breadth-first:
@ includes level-order traversal

@ visit all nodes on the same level before going deeper in the tree

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material

Tree Traversals ~ Types of Traversals

Example

Results of traversals:
o Preorder: 6,3,1,5,10,7
@ Inorder: 1,3,5,6,7,10 (sorted if T is a BST)
@ Postorder: 1,5,3,7,10,6
o Level order: 6,3,10,1,5,7

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material

6/ 13

8 /13



Tree Traversals ~ Types of Traversals Binary Search Tree Iterators Inorder Traversal lterator

Recursive Inorder Traversal A Binary Search Tree Inorder Iterator

Problem: iterator must maintain state, whereas the recursive function

public void printInorder() { traverses the entire tree in one call

printInorder(root);

}

Solution: simulate recursion using a stack

) ] ) @ pop the stack when you have to go back up the tree
private void printInorder(BSTnode<E,V> T) {

if (isEmpty()) returnm; i
Eg. inorder traversal:

printInorder(T.left); @ start at root, move to left-most node and push each node traversed
System.print(T.value); on the stack
printInorder(T.right); @ pop the stack and return this value
¥ @ begin next iteration with the right child of the returned node
Preorder and postorder traversals are analogous @ terminates when the stack is empty and the current node is null
Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 9 /13 Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 10 / 13

Binary Search Tree Iterators Inorder Traversal lterator Binary Search Tree lIterators ~ Other Traversal lterators

Inorder Traversal Example Iterative Versions of Other Traversals

Preorder traversal:
° @ process current node (initially root) and push on the stack
‘ nm @ set current node to left child (if non-empty)
@ otherwise, pop the stack and set current node to right child until
current is non-null or stack is empty and current is null
‘ ‘ ‘ @ terminates when current node is null and the stack is empty
Level-order traversal (similar, but use a queue)
S @ enqueue the root of the tree to start
Traversal: 1,3,5,6,7.10 o dequeue node at the head of the queue and process it
@ enqueue the left and right children, repeat
@ terminates when the queue is empty
Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 11 / 13 Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 12 / 13



Binary Search Tree Iterators = Other Traversal lterators

Level-order Traversal Example

Q: |

Traversal: 6, 3, 10,1, 5,7

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 13 /13



	Iterators
	Java Interfaces

	Tree Traversals
	Types of Traversals

	Binary Search Tree Iterators
	Inorder Traversal Iterator
	Other Traversal Iterators


