
Computer Science 331

Solutions to Selected Tutorial #3 Questions

Questions

Consider the following code segment:

// Pre-condition: A is a non-null array of integers
// that contains at least one element
// Post-condition: max is the largest element in the array A
n = A.length;
max = A[0];
for i from 1 to n-1 do

if (A[i] > max)
max = A[i];

end do

1. Write a loop invariant for this loop. Explain how you would prove that this loop invariant is
correct.

Solution: The following is a loop invariant for the loop in the example:

I(j) : i = j + 1; max is the largest of the elementsA[k] for 0 ≤ k < i; 1 ≤ i ≤ n .

To prove that this loop invariant is correct, we would need to show the following.

• The loop invariant is satisfied whenj = 0, i.e., I(0) holds before the loop body exe-
cutes for the first time.

• If I(j) is satisfied after thejth execution of the loop body and there is a(j + 1)st
execution, thenI(j + 1) is satisfied after the(j + 1)st execution, for each integer
j ≥ 0. In other words

• If there is ajth execution but not a(j + 1)st execution thenI(j) implies the post-
condition (again, for each integerj ≥ 0).

1



Explanation: Recall from the notes that a loop invariant is an assertionI(j) that is true
immediatelyafter the loop body has been executedj times, if the loop body is actually
executedj times, for allj ≥ 0. In the case of a for-loop, you should consider this being
placed in the code immediately after the loop index is initialized or updated but before the
termination test.

The first part in this example is to express the loop indexi as a function ofj, the number of
iterations. The initial value ofi is 1, and this occurs whenj = 0, i.e., the loop has iterated0
times. Thus, we havei = j + 1.

The second part is to give upper and lower bounds on the loop indexi. Before the loop
iterates for the first time we have already argued thati = 1, and when the loop terminates
we havei = n. Thus,1 ≤ i ≤ n.

Finally, we need to provide one or more logical statements succinctly describing the effect
of the loop on the loop’s variables. The purpose of the example, computing the maximum
value in the array, comes from the post-condition provided. The progress made towards this
goal after an iteration of the loop comes from the fact that, after an iteration of the loop,
we know thatmax is the maximum of all the elements searched to that point. Initially, i.e.,
before any iterations of the loop,max is initialized withA[0], and is therefore the maximum
of the single elementA[0]. After the first iteration,max is the maximum ofA[0] andA[1],
and after the third iteration,max is the maximum ofA[0], A[1], andA[2]. In general, after
thejth iteration, we have thatmax is the maximum ofA[0], . . . , A[i − 1]. Notice that this
is true for any iteration, including whenj = 0 (before any iterations) and wheni = n (after
the last iteration).

Putting all this together, we have thatI(j) as defined above is a loop invariant for the loop in
the example.

To prove that this loop invariant is in fact correct, we proceed as follows.

• We first show thatI(0) is satisfied before the first execution of the loop. Initially we
have havemax = A[0] andi = 1. Thus, the first part of the loop invariant (i = j + 1)
and the third (1 ≤ i ≤ n) hold. Whenj = 0, the second part becomes “max is the
largest of the elementsA[k] for 0 ≤ k < 1,” which also holds because the only value
of k in this range is0.

• Next, we show that ifI(j) is satisfied after thejth execution and there is aj + 1st
execution, thenI(j + 1) is satisfied after thej + 1st execution, for each integerj ≥
0. First, note that the first and third conditions of the loop invariant,i = j + 1 and
1 ≤ i ≤ n hold after thejth execution of the loop for anyj. To prove that the second
condition ofI(j +1) holds after thejth execution of the loop, letmaxj be the value of
max after executing the loop bodyj times andmaxj+1 be the value ofmax after the
j + 1st execution. The assumption thatI(j) is correct implies thatmaxj is the largest
of the array elementsA[k] for 0 ≤ k < j + 1 (recall thati = j + 1). To show that

2



I(j + 1) holds after thej + 1st execution, we need to show that after executing the
loop body we will havemaxj+1 is the largest of0 ≤ k < j + 2. We already know that
maxj ≥ A[k] for 0 ≤ k < j + 1 by the assumption thatI(j) holds. When the loop
body is executed, we check whethermaxj > A[j + 1], and, if so,maxj+1 is assigned
the value ofA[j + 1]; otherwise,max is unchanged and we havemaxj+1 = maxj .
Thus, after completion of thej + 1st iteration, we have thatmax is the largest of
A[0], . . . , A[j + 1] as required.

• Finally, we show that if there is ajth execution but not aj + 1st execution thenI(j)
implies the postcondition (again, for each integerj ≥ 0). The loop terminates when
i = n. Thus, if I(j) is true wheni = n, the loop invariant implies thatmax is the
largest ofA[0], . . . , A[n− 1], and this is precisely what is stated in the post-condition.

Notice that the first two parts above constitute a proof by induction of the following claim:

Theorem 0.1. The loop invariantI(j) is true for all j ≥ 0 for which the loop iteratesj
times.

The casej = 0 is the base case, and the second parts completes the inductive proof, using
I(j) as the induction hypothesis.

2. Explain briefly how you would use this loop invariant to prove partial correctness for this
example.

Solution: We need to show that:

• if the pre-condition is true, then the loop invariantI(j) is true forj = 0, i.e., before
any iterations of the loop,

• I(j) implies the post-condition whenever the loop body is executed exactlyj times.

The second of these was established in the previous question. The pre-condition specifies
thatA is a non-null array of integers containing at least one element. Thus, settingmax to
A[0] will terminate correctly, and wheni is initialized to1 by the loop we have thatI(0)
holds.

3. Prove that this loop terminates by giving a loop variant for it. Use the loop variant to give an
upper bound on the number of times that the loop will iterate.

Solution: We claim thatf(n, i) = n − i is a loop variant for this loop. To prove this, we
note thatf(n, i) is an integer-valued function (becausen andi are both integers), and show
thatf(n, i) satisfies the remaining two properties of a loop variant:

• f(n, i) = n − i decreases after every iteration of the loop becausei increases andn
remains constant.

• f(n, i) ≤ 0 wheni ≥ n, and the for-loop terminates wheni = n.

3



Explanation: To find a correct loop variant, we need to construct a function involving the
loop’s variables that decreases after each iteration of the loop body and implies the termi-
nation of the loop when≤ 0. In this case, the loop variant will be a function of the length
of the arrayn and the loop indexi, as these are the only variables involved in deciding the
loop’s termination. The loop terminates wheni = n, so the function must be≤ 0 whenever
i ≥ n and> 0 wheneveri < n (note thati increases after each execution of the loop body).
Putting these together, we see thatf(n, i) = n− i satisfies the requirements.

4


