
Computer Science 331
Analysis of Prim’s Algorithm

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #35

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 1 / 18

Outline

1 Introduction

2 Partial Correctness
Colour Properties
Black Subtree
Proof That All Vertices are (Eventually) Included
Partial Correctness, Concluded

3 Termination and Efficiency

4 Additional Comments and References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 2 / 18

Introduction

Introduction

Objective for Today:

Proof of the Correctness and Efficiency of Prim’s Algorithm (as
presented last time)

Note: The specification of requirements for this problem (including
a pre-condition and post-condition) and pseudocode for Prim’s
algorithm were included in the previous set of notes.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 3 / 18

Partial Correctness Colour Properties

Colour Properties

The following properties are proved by inspection of the code:
1 Colour Properties:

The initial colour of every node v ∈ V is white .
The colour of a vertex can change from white to grey .
The colour of a vertex can change from grey to black .
No other changes in colour are possible.

2 Contents of Priority Queue: The following properties are part of
the loop invariant for the while loop:

If (u, d) is an element of the priority queue then u ∈ V ,
colour [u] = grey , and d = d [u].
If a vertex v (and its cost) were included on the queue but have
been removed, then colour [v] = black .
Vertices that have never been in the queue are white .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 4 / 18

Partial Correctness Colour Properties

Colour Properties

The following properties are also part of the loop invariant for the
while -loop.

For all vertices v ∈ V , if the colour of v is grey , then
(v , d [v]) is an element of the priority queue
Either v = s and d [v] = 0 or v 6= s and

d [v] = min
w∈V

colour [w]=black
(v ,w)∈E

w((v , w))

If v 6= s then π(v) ∈ V , colour(π(v)) = black , (π(v), v) ∈ E , and
w((π(v), v)) = d [v].

The neighbours of any black vertex in G are either grey or black .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 5 / 18

Partial Correctness Black Subtree

Black Subtree

Consider Gb = (Vb, Eb), where

Vb = {v ∈ V | colour(v) = black }
Eb = {(π(v), v) | v ∈ Vb and π(v) 6= NIL}

The following properties hold at the end of each execution of the while
loop (and are part of the loop invariant).

Vb ⊆ V and Eb ⊆ E
Either |Vb| = |Eb| = 0, or

For all u ∈ V , if colour(u) = black and π(u) 6= NIL then
colour(π(u)) = black as well
For all u, v ∈ V , if (u, v) ∈ Eb then (u, v) ∈ E as well (so that
Eb ⊆ E)

Thus Gb = (Vb, Eb) is a subgraph of G.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 6 / 18

Partial Correctness Black Subtree

Black Subgraph is a Tree

The following also holds at the end of each execution of the while loop
and should be part of the loop invariant.

Claim:
If Vb 6= ∅ then Gb is a tree .

Sketch of Proof.
If Vb 6= ∅ then |Eb| = |Vb| − 1 because

one edge per vertex in Vb (except for s)

If Vb 6= ∅ then Gb = (Vb, Eb) is a connected graph because

π(v) is black (and thus in Vb) for all v ∈ Vb

Conclusion: If Vb 6= ∅ then Gb is a tree (Lemma 7 of Lecture 30)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 7 / 18

Partial Correctness Black Subtree

Black Subgraph is a Subgraph of a Spanning Tree

Claim:

If Ĝ = (V̂ , Ê) is a subgraph of G and acyclic, then Ĝ is also a subgraph
of some spanning tree T of G.

Method of Proof: induction on |Ê | − (|V | − 1) (note that |Ê | ≤ |V | − 1,
since V̂ ⊆ V and Ĝ is acyclic).

Key Idea: If |Ê | < |V | − 1 then it must be possible to include another
edge from E without creating a cycle — otherwise the graph G would
not be connected!

Application: The following is also part of the loop invariant:

Claim:
Gb is a subgraph of some spanning tree T of G.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 8 / 18

Partial Correctness Black Subtree

Black Subtree is a Subgraph of a MST

The following is also true at the end of each execution of the
while -loop (and is part of the loop invariant).

Claim:
Gb is a subgraph of a minimum-cost spanning tree of G.

Comments on Proof:

This is true before and after the first execution of the loop body
(when Vb = ∅ and when Vb = {s}) because Gb is a subgraph of
every spanning tree of G in these cases.

Complication: There can be more than one minimum-cost
spanning tree of G, and Gb is generally not a subgraph of all such
spanning trees later on in the computation.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 9 / 18

Partial Correctness Black Subtree

More Comments on the Proof

Structure of Proof:

Keep track of some minimum-cost spanning tree T of G such that
Gb is a subgraph of T .

During an execution of the loop body (for the second and all
subsequent executions) a vertex and edge are each added to Gb

to produce a larger subgraph G′
b.

If G′
b is not a subgraph of the spanning tree T then another

spanning tree T ′ is constructed such that
T ′ is also a minimum-cost spanning tree of G
G′

b is a subgraph of T ′.

The complete proof of this claim will be provided in a separate
handout.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 10 / 18

Partial Correctness Proof That All Vertices are (Eventually) Included

On the Growth of Vb

Here is another part of the loop invariant for the while -loop.

Claim:
If k ≥ 0 and the body of the while loop is executed k or more times
then, at the end of the k th execution of the body of the loop,

|Vb| = k .

Method of Proof:

Corollary 1
The body of the while loop is executed at most |V | times.

Explanation:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 11 / 18

Partial Correctness Proof That All Vertices are (Eventually) Included

On the Growth of Vb

Claim:
If 0 ≤ k < |V | then the priority queue is nonempty (and one or more
grey vertices exist) immediately after the k th execution of the body of
the while loop.

Proof (by contradiction).
Suppose that 0 ≤ k < |V | and the priority queue is empty after the
k th execution of the body of the while loop.

|Vb| = k < |V | at this point.

k ≥ 1 and s ∈ Vb at this point, so the colour of s is black .

All neighbours of black vertices are black . Explanation:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 12 / 18

Partial Correctness Proof That All Vertices are (Eventually) Included

On the Growth of Vb (continued)

Proof (continued).
It follows that the only nodes that are reachable from black nodes
are also black .
Explanation:

However, since s is a black node and there is at least one white
node at this point, it follows that at least one node is not reachable
from s.

In other words, G is not connected — but the pre-condition
includes the assertion that G is a connected graph.

Conclusion: The body of the while loop is executed exactly |V | times
and Vb = V on termination of this loop.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 13 / 18

Partial Correctness Partial Correctness, Concluded

Partial Correctness

Suppose the pre-condition of the algorithm holds initially, that is,
G = (V , E) is a connected weighted graph.

Properties Established on Termination:

Gb = (Vb, Eb) is a subgraph of a MST of G.

Gb is a tree.

Vb = V .

Conclusion: Gb is a minimum-cost spanning tree of G.

Since Vb = V , the set of edges

Ê = {(π(v), v) | v ∈ V and π(v) 6= NIL}

is the same as the set of edges Eb included in Gb.

Note: The post-condition can be established!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 14 / 18

Termination and Efficiency

Termination and Efficiency

Claim:
If MST-Prim is executed on a weighted undirected graph G = (V , E)
then the algorithm terminates after performing O((|V |+ |E |) log |V |)
steps in the worst case.

Proof.
This is virtually identical to the proof of the corresponding result for
Dijkstra’s algorithm (to compute minimum-cost paths).

The number of operations on the priority queue, and the number
of operations that do not involve this data structure, are each
in O(|V |+ |E |) in the worst case (by the argument that has been
applied to the last three algorithms considered).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 15 / 18

Termination and Efficiency

Termination and Efficiency (cont.)

Proof (continued).
Since the size of the priority queue never exceeds |V | and since
the only operations on the priority queue used are insertions,
decreases of key values, and extractions of the minimum (top
priority) element, the cost of each operation on the data structure
is in O(log |V |).
It follows immediately that the total number of steps is in
O((|V |+ |E |) log |V |), as claimed.

O(|V | log |V |+ |E |) using a Fibonacci heap (amortized)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 16 / 18

Additional Comments and References

Additional Comments

On Greedy Algorithms

Prim’s algorithm is an example of a greedy algorithm: A “global”
optimization problem (finding a minimum-cost spanning tree) is
solved by making a sequence of “local” greedy choices (by
extending a tree with edges whose weights are as small as
possible).

Proving correctness of greedy algorithms is often challenging.
Indeed, greedy heuristics are often incorrect.

On the other hand, when they are correct, greedy algorithms are
frequently simpler and more efficient than other algorithms for the
same computation.

See CPSC 413 for more about greedy algorithms!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 17 / 18

Additional Comments and References

References

References

Cormen, Leiserson, Rivest and Stein
Introduction to Algorithms, Second Edition

Chapter 23 includes Prim’s algorithm along with another greedy
algorithm for this problem (Kruskal’s algorithm), as well as a more
general argument that establishes the correctness of both.

Textbook, Section 12.6 (p.666-670): This includes another
description of Prim’s algorithm which does not use a priority
queue and (unfortunately) does not include a proof of correctness.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 18 / 18

	Introduction
	Partial Correctness
	Colour Properties
	Black Subtree
	Proof That All Vertices are (Eventually) Included
	Partial Correctness, Concluded

	Termination and Efficiency
	Additional Comments and References

