

Introduction

Computation of Minimum Cost Paths

Presented Here:

- *Dijkstra's Algorithm:* a generalization of **breadth-first search** to weighed graphs
- Rather than looking for paths with minimum *length* we will look for paths with minimum *cost*, that is, minimum *total weight*
- Application: finding the best *route* from one place to another on a map, when multiple routes are available (single-source shortest path problem)
- This is also an interesting application of priority queues

Introduction

Definitions Paths and Their Costs

Suppose now that G = (V, E) is a *weighted* graph.

• Consider a *path*, that is, a sequence of vertices

 u_1, u_2, \ldots, u_k

where $k \ge 1$, $u_i \in V$ for $1 \le i \le k$, and where $(u_i, u_{i+1}) \in E$ for $1 \le i \le k-1$.

- This is a path from *u* to *v* if $u_1 = u$ and $u_k = v$.
- The cost of this path is defined to be

$$\sum_{i=1}^{k-1} w((u_i, u_{i+1})).$$

Note that if k = 1 then the path has *length* 0 and it also has *cost* 0 (because the above sum has no terms).

Introduction

Example

Consider the following graph G and the weights shown near the edges.

d

The following are paths from a to g with cost 6 :

- *a*, *c*, *d*, *e*, *g* (consists of edges (*a*, *c*), (*c*, *d*), (*d*, *e*), (*e*, *g*))
- *a*, *c*, *d*, *f*, *g* (consists of edges (*a*, *c*), (*c*, *d*), (*d*, *f*), (*f*, *g*))

```
Minimum Cost Paths
```

The path u_1, u_2, \ldots, u_k is a *minimum-cost path from u to v* if

Introduction

- this is a path from *u* to *v* (as defined above), and
- the cost of this path is *less than or equal to* the cost of any *other* path from *u* to *v* (in this graph).

Note:

- If some weights of edges are *negative* then minimum cost paths might not exist (because there may be paths from *u* to *v* that include negative-cost cycles, whose costs are smaller than any bound you could choose)!
- In this lecture we will consider a version of the problem where edges weights are all *nonnegative*, in order to avoid this problem.

```
Mike Jacobson (University of Calgary)
```

Post-Condition:

Computer Science 331

Introduction

• The predecessor graph $G_p = (V_p, E_p)$ corresponding to the

function π and vertex *s* is a tree, with root *s*, containing all the vertices (and, only the vertices) in *V* that are reachable from *s*.

• For every vertex $v \in V$, d[v] is the cost of a minimum-cost path

from s to v in G. In particular, $d[v] = +\infty$ if and only if v is not

 For every vertex v ∈ V that is reachable from s, the path from s to v in the predecessor graph G_p is a *minimum-cost* path from s

Specification of Requirements (cont.)

Lecture #33 6 / 28

Introduction

Computer Science 331

Specification of Requirements

Inputs and Outputs

like Jacobson (University of Calgary)

 Inputs and outputs have the same names and types as for "Breadth First Search" but somewhat different meanings.

Pre-Condition

• G = (V, E) is a weighted graph such that

$$w((u,v)) \geq 0$$

for every edge $(u, v) \in E$

S ∈ V

Lecture #33

5/28

to v in G.

reachable from s in G at all.

Algorithm

Data Structures

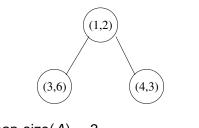
The algorithm (to be presented next) will use a **priority queue** to store information about costs of paths that have been found.

- The priority queue will be a *MinHeap*: the entry with the *smallest* priority will be at the top of the heap.
- Each node in the priority queue will store a *vertex* in *G* and the *cost* of a path to this vertex.
- The *cost* will be used as the node's priority.
- An array-based representation of the priority queue will be used.

A second array will be used to locate each entry of the priority queue for a given vertex in constant time.

Data Structures

Example:



heap	o-size(A) = 3				
	0	1	2	3	4	
A:	(1,2)	(3,6)	(4,3)	?	?	
	0	1	2	3	4	
B:	NIL	0	NIL	1	2	

Explanation:

Algorithm

- element (v, c) in the priority queue consists of vertex v and cost c of a path from s to v
- A contains an array representation of the min-heap
- *B* gives the index of a vertex in the array representation of the priority queue. Examples:
 - vertex 3 is in the priority queue (at index *B*[3] = 1)
 - vertex 0 is not in the priority queue (*B*[0] = *NIL*)

10/28

Mike Jacobson (University of Calgary) **Computer Science 331** Lecture #33 9/28 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #33 Algorithm Algorithm Pseudocode Pseudocode, Continued while (Q is not empty) do $(u, d) = \text{extract-min}(Q) \{ \text{Note: } d = d[u] \}$ MCP(G, s)for each $v \in Adj[u]$ do for $v \in V$ do if (colour[v] == white) then colour[v] = whited[v] = d + w((u, v)) $d[v] = +\infty$ $colour[v] = grey; \pi[v] = u$ $\pi[v] = \text{NIL}$ enqueue(v, d[v]) end for else if (colour[v] == grey) then Initialize the priority queue Q to be empty Update information about v {Shown on next slide} colour[s] = greyend if d[s] = 0end for enqueue((s, 0))colour[u] = blackend while

return π . d

Algorithm

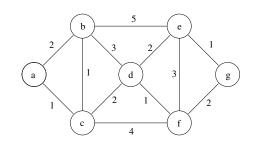
Pseudocode, Concluded

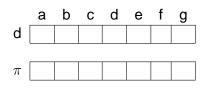
Updating Information About v

if (d + w((u, v)) < d[v]) then old = d[v] d[v] = d + w((u, v)) $\pi[v] = u$ Use *Decrease-Key* to replace (v, old)on *Q* with (v, d[v])end if Example

Example

Consider the execution of MCP(G, a):





Mike Jacobson (University of Calgary) Computer Scien	nce 331 Lecture #33 13 / 28	Mike Jacobson (University of Calgary) Computer S	Science 331 Lecture #33 14 / 28
Example (Step 1)		Example (Step 2)	
b 5 e 1 d 3 g	a b c d e f g d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a b c d e f g d

(c)

f

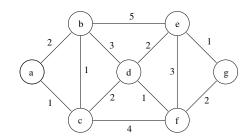
(c)-

-(f)

4

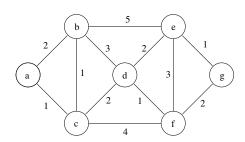
Example

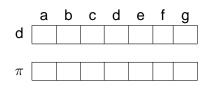
Example (Step 3)



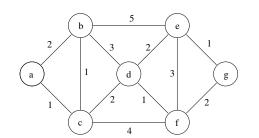
	а	b	С	d	е	f	g	
d]
								1
π								J

Example (Step 4)



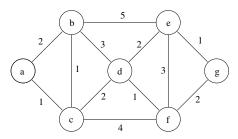


Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #33 17 / 28
	Example	
	Zhanipio	
Example (Step 5)		



	а	b	С	d	е	f	g	
d]
					-			_
π								ļ

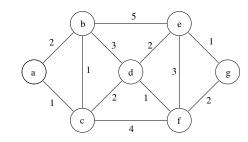
Example (Step 6)





Example

Example (Step 7)



	а	b	с	d	е	f	g
d							
_ [
π							

Analysis

Easily Established Properties

Each of the following is easily established by inspecting the code:

- Colour Properties:
 - The initial colour of every node $v \in V$ is white.
 - The colour of a vertex can change from white to grey.
 - The colour of a vertex can change from grey to black.
 - No other changes in colour are possible.
- Contents of Queue: The following properties are part of the loop invariant for the while loop:
 - If (u, d) is an element of the queue then u ∈ V, colour[u] = grey, and d = d[u].
 - If a vertex v (and its cost) were included on the queue but have been removed, then colour[v] = black.
 - Vertices that have never been on the queue are white.

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #33 21 / 28	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #33	22 / 28

Analysis

Additional Properties (Proofs Not Too Hard)

The following are also part of the loop invariant for the while loop.

- 3 All vertices that belong to the predecessor subgraph (for π and s) are either **grey** or **black**.
- All neighbours of any black vertex are either black or grey.
- If the colour of a vertex v is **black** or **grey** then there exists a path

 $u_1, u_2, ..., u_k$

from *s* to *v* in the predecessor subgraph with cost d[v] such that $colour[u_i] =$ **black** for $1 \le i \le k - 1$ ($u_1 = s, u_k = v$)

Furthermore, *all* paths from *s* to *v* in *G* with the above form (i.e., all but the final vertex is **black**) have cost *at least* d[v].

- **(b)** If colour[x] =**black** and colour[y] =**grey** then $d[x] \le d[y]$.
- If colour[x] = white then $d[x] = +\infty$.

Analysis

One Final Property

The next property is part of the loop invariant, as well.

Suppose that the colour of v is either grey or white. Then every path from s to v in G must begin with a sequence of vertices

 u_1, u_2, \ldots, u_k

where $k \ge 2$, $colour[u_i] = black$ for $1 \le i \le k - 1$, and where $colour[u_k] = grey$.

Indeed, this is a consequence of Property #4 (listed above).

Undoubtedly, some of these properties do not seem very interesting. They are important because they help to establish the one that is given next.

Analysis

Final Piece of the Loop Invariant

Application of the Loop Invariant

Here is the last piece of the loop invariant.

- The following property is satisfied by every vertex v such that colour[v] = black, and also by the vertex v such that (v, d[v]) is at the top of the priority queue, if Q is nonempty:
 - The unique path from s to v in the predecessor subgraph for π and s is a minimum-cost path from s to v in G, and the cost of this path is d[v].

The **loop invariant** consists of the pieces of it that have now been identified.

One can establish that this *is* a loop invariant by induction on the number of executions of the loop body.

Notice that, if the loop terminates, then

- The priority queue is *empty*.
- Therefore there are no grey vertices left!
- Therefore the only neighbours of black vertices are also black.
- This can be used to show that no white vertex is reachable from s.
- This, and various pieces of the loop invariant, can be used to establish partial correctness of the algorithm.

