Computer Science 331
 Breadih-First Search

Mike Jacobson

Department of Computer Science
University of Calgary
Lecture \#32

Begin with s; expand the boundary between "discovered" and "undiscovered" vertices uniformly across the breadth of the boundary

As in DFS, Vertices are coloured during the search

- All vertices are initially white, s is almost immediately coloured grey.
- All white vertices are "undiscovered."
- "Discovered" vertices are either grey or black. Vertices on the boundary between discovered and undiscovered vertices are grey. Other discovered vertices are black.

Unlike DFS, when a grey vertex t is processed, all white neighbours are recoloured grey; t is then coloured black.

The following information is maintained for each $u \in V$:

- colour[u]: Colour of u
- $d[u]$: Distance of u from s
- $\pi[u]$: Parent of u in tree being constructed

In order to ensure that the search is performed in a "breadth-first" way, a queue is used to store grey nodes
Pseudocode Algorithm

BFS(G, s)

\{Initialization\}
for each vertex $u \in V$ do
colour $[u]=$ white $\quad\{$ mark all vertices as undiscovered $\}$
$d[u]=+\infty$ $\pi[u]=$ NIL
end for
colour $[s]=$ grey $\quad\{$ start with source vertex $s\}$
$d[s]=0 \quad$ \{path from s to itself has distance 0$\}$
$\pi[s]=$ NIL $\quad\{s$ is the root of the BFS tree (no parent) $\}$
Initialize queue Q to be empty
enqueue $(Q, s) \quad$ \{add first grey node s to the queue $\}$

Algorithm

Pseudocode, Continued
 Pseudocode, Continued

while (Q is not empty) do
$u=$ dequeue (Q)
for each $v \in \operatorname{Adj}[u]$ do
\{examine neighbours of u \}
if colour $[v]==$ white then
colour $[v]=$ grey \quad \{discover each undiscovered neighbour\}
$d[v]=d[u]+1 \quad\{$ shortest path: s to u followed by $(u, v)\}$
$\pi[v]=u \quad\{u$ is the predecessor on the shortest path $\}$
enqueue $(Q, v) \quad\{$ examine neighbours of $v\}$
end if
end for
colour $[u]=$ black $\quad\{$ all neighbours of u have been discovered $\}$
end while return π, d

Partial Correctness of Breadth-First Search

The shortest-path distance $\delta(s, v)$ from s to v is the minimum number of edges on a path from s to v.

Theorem 1

Let $G=(V, E)$ be a directed or undirected graph, and suppose BFS is run on G from a given source vertex $s \in V$. Then each of the following properties is satisfied on termination of the algorithm (if it terminates):

- The predecessor subgraph $G_{p}=\left(V_{p}, E_{p}\right)$ for the function π and vertex s is a tree containing all of (and only those) vertices that are reachable from s in G.
- For all $v \in V, d[v]$ is the length of a shortest path from s to v in G, and $d[v]=+\infty$ if and only if v is not reachable from s.
- For every $v \in V$ that is reachable from s, the path from s to v in G_{p} is also a shortest path from s to v in G.

Mike Jacobson (University of Calgary) Computer Science 331

Lemma 3

Let $G=(V, E)$ be a directed or undirected graph, and suppose BFS is run on G from a given source vertex $s \in V$. Then, if BFS terminates, for each vertex $v \in V$, the value $d[v]$ calculated by the algorithm satisfies the inequality $d[v] \geq \delta(s, v)$.

Proof: induction on the number of enqueue operations

Proof of Distance Inequality

Proof.

Base case (s is enqueued):

- $d[s]=\delta(s, s)=0$, and $d[v]=\infty \geq \delta(s, v)$ for all $v \in V-\{s\}$

Inductive step (white vertex v discovered during the search from u):

- $d[u] \geq \delta(s, u)$ by inductive hypothesis
- algorithm sets $d[v]=d[u]+1 \geq \delta(s, u)+1$
- thus, by Lemma $2, d[v] \geq \delta(s, v)$
- v is coloured grey and enqueued
- v is never enqueued again (only new grey nodes are enqueued)
$d[v]$ never changes again (inductive hypothesis is maintained)

Proof.

Base case (Q contains only s) holds trivially

Inductive step (Lemma holds after enqueuing or dequeing a vertex):
(1) if v_{1} is dequeued, v_{2} becomes the new head

- by the inductive hypothesis $d\left[v_{1}\right] \leq d\left[v_{2}\right]$
- thus $d\left[v_{r}\right] \leq d\left[v_{1}\right]+1 \leq d\left[v_{2}\right]+1$
(2) if v_{r+1} is enqueued
- vertex u previously removed, so $d\left[v_{1}\right] \geq d[u]$ by hypothesis
- thus $d\left[v_{r+1}\right]=d[u]+1 \leq d\left[v_{1}\right]+1$
- by hypothesis $d\left[v_{r}\right] \leq d[u]+1$, so $d\left[v_{r}\right] \leq d\left[v_{r+1}\right]$

Thus, after either operation, the lemma holds.

Lemma: Enqueued Vertices

Lemma 4

Suppose that during the execution of BFS on a graph $G=(V, E)$, the queue Q contains vertices $\left\langle v_{1}, v_{2}, \ldots, v_{r}\right\rangle$, where v_{1} is the head of Q and v_{r} is the tail of Q. Then $d\left[v_{r}\right] \leq d\left[v_{1}\right]+1$ and $d\left[v_{i}\right] \leq d\left[v_{i+1}\right]$ for $1 \leq 2 \leq r-1$.

Interpretation of Lemma:

- second inequalities: d values of vertices in Q are increasing
- first inequality: there are at most two distinct d values for all vertices in Q

Proof: induction on the number of queue operations

Mike Jacobson (University of Calgary)

Lemma 5

Suppose that vertices v_{i} and v_{j} are enqueued during the execution of BFS, and that v_{i} is enqueued before v_{j}. Then $d\left[v_{i}\right] \leq d\left[v_{i}\right]$ at the time v_{i} is enqueued.

Proof.

Follows from Lemma 4, and the fact that each vertex only receives a finite d value once.

Outline of Proof (Correctness of Distance Lemma)

Lemma 6

If a vertex v is enqueued at any point during the execution of the algorithm, then v is reachable from s. Furthermore, the value $d[v]$ that is set immediately before v is enqueued is equal to $\delta(s, v)$.

See handout for complete proof.

Analysis

Proof Outline (continued)

When u is dequeued, its neighbour v is either white, grey, or black:
(1) if white, then algorithm sets $d[v]=d[u]+1$ (contradiction)
(2) if black, v was already removed from the queue and by Lemma 5 $d[v] \leq d[u]$ (contradiction)
(3) if grey, v was coloured after removing another vertex w before u :

- $d[v]=d[w]+1$, but by Lemma $5 d[w] \leq d[u]$
- thus $d[v] \leq d[u]+1$ (contradiction)

In all three cases, we have a contradiction to the inequality $d[v]>d[u]+1$

Thus, we must have $d[v]=\delta(s, v)$ as required

Assume v is the vertex with smallest $\delta(s, v)$ value for which $d[v]$ is incorrect

- By Lemma $3 d[v] \geq \delta(s, v) \Rightarrow d[v]>\delta(s, v)$

Suppose u precedes v on the shortest path from s to v.

- $\delta(s, u)<\delta(s, v)$, so by our choice of v we have $d[u]=\delta(s, u)$
- Thus $d[v]>\delta(s, v)=\delta(s, u)+1=d[u]+1$

Proceed by arguing that when u is dequeued, the inequality

$$
d[v]>d[u]+1
$$

is violated.
Mike Jacobson (University of Calgary) Computer Science 331

Analysis
 Lemma: Completeness of Predecessor Subgraph

Lemma 7

Suppose the BFS algorithm is run with a graph $G=(V, E)$ and vertex $s \in V$ as input. If the algorithm terminates then, on termination, the predecessor subgraph for the function π and vertex s includes all of the vertices in G (and, only those vertices) that are reachable from s.

Proof.

- By Lemma 6, all $v \in V$ that are enqueued are reachable from s
- Algorithm sets $\pi[v]=u$ when v is enqueued.
- Thus, all vertices in the predecessor subgraph ($\pi[v] \neq$ NIL $)$ are reachable from s.

```
Proof.
First point follows from Lemma 7.
Second point follows from Lemma 6
The third point holds because:
- if \(\pi[v]=u\), then \(d[v]=d[u]+1\) (from the pseudocode)
- shortest path from \(s\) to \(\pi[v]\) followed by the edge \((\pi[v], v)\) has minimal length \(d[u]+1\)
```


References

Text, Section 12.4: A similar version of the algorithm that does not compute and return the distances of vertices from the input node.

Introduction to Algorithms, Section 22.3: More details about the version of the algorithm presented here.

```
Theorem 8
Let \(G=(V, E)\) be a directed or undirected graph, and suppose BFS is run on \(G\) from a given source vertex \(s \in V\). Then the algorithm terminates after performing \(O(|V|+|E|)\) operations.
```

```
Proof.
        vertices is \Theta(|E|)
    - cost of initialization is O(|V|)
Thus, total cost is O(|V|+|E|).
```

 - Each vertex is enqueued and dequeued at most once - \(O(|V|)\)
 - Adjacency list of each vertex is scanned once - total for all