

Breadth-First Search

Algorithm to search a graph in *breadth-first order*

• visit all neighbours of a node before going deeper

Given a graph G and source vertex s, the algorithm finds

- the vertices that are reachable from *s* by following edges (in their "forward" direction if the graph is directed)
- the distance (number of edges) of each of these vertices from s
- a shortest path from s to each vertex
- a tree with root s including vertices reachable from s

Idea

Algorithm

Begin with *s*; expand the boundary between "discovered" and "undiscovered" vertices uniformly across the breadth of the boundary

As in DFS, Vertices are coloured during the search

- All vertices are initially **white**, *s* is almost immediately coloured **grey**.
- All white vertices are "undiscovered."
- "Discovered" vertices are either grey or black. Vertices on the boundary between discovered and undiscovered vertices are **grey**. Other discovered vertices are **black**.

Unlike DFS, when a grey vertex *t* is processed, all white neighbours are recoloured grey; *t* is then coloured black.

Typical Search Pattern

Algorithm

Data and Data Structures

The following information is maintained for each $u \in V$:

- *colour*[*u*]: Colour of *u*
- *d*[*u*]: Distance of *u* from *s*
- $\pi[u]$: Parent of *u* in tree being constructed

In order to ensure that the search is performed in a "breadth-first" way, a **queue** is used to store grey nodes

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #32	5 / 23	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #32	6 / 23
Pseudocode	Algorithm			Pseudocode, Con	Algorithm tinued		
$\begin{aligned} & \textbf{BFS}(G, s) \\ & \{ \text{Initialization} \} \\ & \textbf{for each vertex } u \in V \\ & colour[u] = \text{white} \\ & d[u] = +\infty \\ & \pi[u] = \text{NIL} \\ & \textbf{end for} \\ & colour[s] = \text{grey} \{ \text{states} \\ & d[s] = 0 \{ \text{path from} \\ & \pi[s] = \text{NIL} \{ s \text{ is the states} \\ & \text{Initialize queue } Q \text{ to be enqueue}(Q, s) \{ \text{add} \} \end{aligned}$	do {mark all vertices as undis art with source vertex <i>s</i> } <i>s</i> to itself has distance 0} root of the BFS tree (no pa e empty first grey node <i>s</i> to the qu	scovered} arent)} ieue}		while (Q is not empty u = dequeue(Q) for each $v \in Adj[u]$ {examine neighting if $colour[v] = e^{-1}$ $colour[v] = grice d[v] = d[u] + \pi[v] = u \{u\}enqueue(Q, v)end ifend forcolour[u] = blackend whilereturn \pi, d$	y) do y) do bours of <i>u</i> } white then rey {discover each undisc 1 {shortest path: <i>s</i> to <i>u</i> for is the predecessor on the s) {examine neighbours of {all neighbours of <i>u</i> have	covered neighbou ollowed by (<i>u</i> , <i>v</i>)} shortest path} f <i>v</i> } been discovered	r}

Example

Example

Useful Property of Distances

Partial Correctness of Breadth-First Search

The shortest-path distance $\delta(s, v)$ from s to v is the minimum number of edges on a path from s to v.

Theorem 1

Let G = (V, E) be a directed or undirected graph, and suppose BFS is run on G from a given source vertex $s \in V$. Then each of the following properties is satisfied on termination of the algorithm (if it terminates):

- The predecessor subgraph G_p = (V_p, E_p) for the function π and vertex s is a tree containing all of (and only those) vertices that are reachable from s in G.
- For all v ∈ V, d[v] is the length of a shortest path from s to v in G, and d[v] = +∞ if and only if v is not reachable from s.
- For every v ∈ V that is reachable from s, the path from s to v in G_p is also a shortest path from s to v in G.

```
Mike Jacobson (University of Calgary)
```

Computer Science 331

Lecture #32 10 / 23

Lemma: Distance Inequality

Lemma 2

Mike Jacobson (University of Calgary)

Let G = (V, E) be a directed or undirected graph, and let $s \in V$ be an arbitrary vertex. Then, for every edge $(u, v) \in E$, $\delta(s, v) \le \delta(s, u) + 1$.

Computer Science 331

Analysis

Proof.

If *u* is reachable from *s* :

- one path from s to v : shortest path to u followed by edge (u, v)
- shortest path to v is at most as long as this path ($\delta(s, u) + 1$)
- Otherwise, $\delta(s, u) = \infty$ and the inequality holds.

Lemma 3

Let G = (V, E) be a directed or undirected graph, and suppose BFS is run on G from a given source vertex $s \in V$. Then, if BFS terminates, for each vertex $v \in V$, the value d[v] calculated by the algorithm satisfies the inequality $d[v] \ge \delta(s, v)$.

Proof: induction on the number of enqueue operations

Lecture #32

9/23

Analysis

Proof of Distance Inequality

Proof.

Base case (*s* is enqueued):

• $d[s] = \delta(s, s) = 0$, and $d[v] = \infty \ge \delta(s, v)$ for all $v \in V - \{s\}$

Inductive step (white vertex v discovered during the search from u):

- $d[u] \ge \delta(s, u)$ by inductive hypothesis
- algorithm sets $d[v] = d[u] + 1 \ge \delta(s, u) + 1$
- thus, by Lemma 2, $d[v] \ge \delta(s, v)$
- v is coloured grey and enqueued
- v is never enqueued again (only new grey nodes are enqueued)
- d[v] never changes again (inductive hypothesis is maintained)

Mike Jacobson (University of Calgary)

Computer Science 331

Analysis

Proof (Enqueued Vertices Lemma)

Proof.

Base case (Q contains only s) holds trivially

Inductive step (Lemma holds after enqueuing or dequeing a vertex):

- if v_1 is dequeued, v_2 becomes the new head
 - by the inductive hypothesis $d[v_1] \leq d[v_2]$
 - thus $d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$

2 if v_{r+1} is enqueued

- vertex *u* previously removed, so *d*[*v*₁] ≥ *d*[*u*] by hypothesis
- thus $d[v_{r+1}] = d[u] + 1 \le d[v_1] + 1$
- by hypothesis $d[v_r] \leq d[u] + 1$, so $d[v_r] \leq d[v_{r+1}]$

Thus, after either operation, the lemma holds.

Lemma: Enqueued Vertices

Lemma 4

Suppose that during the execution of BFS on a graph G = (V, E), the queue Q contains vertices $\langle v_1, v_2, ..., v_r \rangle$, where v_1 is the head of Q and v_r is the tail of Q. Then $d[v_r] \le d[v_1] + 1$ and $d[v_i] \le d[v_{i+1}]$ for $1 \le 2 \le r - 1$.

Interpretation of Lemma:

- second inequalities: *d* values of vertices in *Q* are increasing
- first inequality: there are at most two distinct *d* values for all vertices in *Q*

Proof: induction on the number of queue operations

```
Mike Jacobson (University of Calgary)
```

Computer Science 331

Lecture #32 14 / 23

Analysis

Lemma: Distance and Queue Order

Lemma 5

Suppose that vertices v_i and v_j are enqueued during the execution of BFS, and that v_i is enqueued before v_j . Then $d[v_i] \le d[v_j]$ at the time v_i is enqueued.

Proof.

Follows from Lemma 4, and the fact that each vertex only receives a finite *d* value once.

13/23

Lecture #32

Lemma: Correctness of Distance

Lemma 6

If a vertex v is enqueued at any point during the execution of the algorithm, then v is reachable from s. Furthermore, the value d[v] that is set immediately before v is enqueued is equal to $\delta(s, v)$.

Computer Science 331

See handout for complete proof.

Outline of Proof (Correctness of Distance Lemma)

Assume *v* is the vertex with smallest $\delta(s, v)$ value for which d[v] is incorrect

• By Lemma 3 $d[v] \ge \delta(s, v) \Rightarrow d[v] > \delta(s, v)$

Suppose u precedes v on the shortest path from s to v.

- $\delta(s, u) < \delta(s, v)$, so by our choice of v we have $d[u] = \delta(s, u)$
- Thus $d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$

Proceed by arguing that when *u* is dequeued, the inequality

$$d[v] > d[u] + 1$$

is violated.

Computer Science 331

Lecture #32 18 / 23

Analysis

Proof Outline (continued)

like Jacobson (University of Calgary)

When u is dequeued, its neighbour v is either white, grey, or black:

- () if white, then algorithm sets d[v] = d[u] + 1 (contradiction)
- if black, *v* was already removed from the queue and by Lemma 5 *d*[*v*] ≤ *d*[*u*] (contradiction)
- **(3)** if grey, v was coloured after removing another vertex w before u:
 - d[v] = d[w] + 1, but by Lemma 5 $d[w] \le d[u]$
 - thus $d[v] \le d[u] + 1$ (contradiction)

In all three cases, we have a contradiction to the inequality d[v] > d[u] + 1

Lecture #32

Lemma: Completeness of Predecessor Subgraph

Analysis

Lemma 7

Suppose the BFS algorithm is run with a graph G = (V, E) and vertex $s \in V$ as input. If the algorithm terminates then, on termination, the predecessor subgraph for the function π and vertex s includes all of the vertices in G (and, only those vertices) that are reachable from s.

Proof.

- By Lemma 6, all $v \in V$ that are enqueued are reachable from s
- Algorithm sets $\pi[v] = u$ when v is enqueued.
- Thus, all vertices in the predecessor subgraph (π[ν] ≠ NIL) are reachable from s.

Proof of Theorem 1 (partial correctness of BFS)

Proof.

First point follows from Lemma 7.

Second point follows from Lemma 6

The third point holds because:

- if $\pi[v] = u$, then d[v] = d[u] + 1 (from the pseudocode)
- shortest path from s to π[v] followed by the edge (π[v], v) has minimal length d[u] + 1

Efficiency

Theorem 8

Let G = (V, E) be a directed or undirected graph, and suppose BFS is run on G from a given source vertex $s \in V$. Then the algorithm terminates after performing O(|V| + |E|) operations.

Analysis

Proof.

• Each vertex is enqueued and dequeued at most once — O(|V|)

Computer Science 331

22/23

Lecture #32

- Adjacency list of each vertex is scanned once total for all vertices is ⊖(|*E*|)
- cost of initialization is O(|V|)
- Thus, total cost is O(|V| + |E|).

Mike Jacobson (University of Calgary)

Mike Jacobson (University of Calgary)	Computer Science 331		Lecture #32	21 / 23
	References			
References				

Text, Section 12.4: A similar version of the algorithm that does not compute and return the distances of vertices from the input node.

Introduction to Algorithms, Section 22.3: More details about the version of the algorithm presented here.