
Computer Science 331
Breadth-First Search

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #32

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 1 / 23

Outline

1 Introduction

2 Algorithm

3 Example

4 Analysis

5 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 2 / 23

Introduction

Breadth-First Search

Algorithm to search a graph in breadth-first order

visit all neighbours of a node before going deeper

Given a graph G and source vertex s, the algorithm finds

the vertices that are reachable from s by following edges (in their
“forward” direction if the graph is directed)

the distance (number of edges) of each of these vertices from s

a shortest path from s to each vertex

a tree with root s including vertices reachable from s

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 3 / 23

Algorithm

Idea

Begin with s; expand the boundary between “discovered” and
“undiscovered” vertices uniformly across the breadth of the boundary

As in DFS, Vertices are coloured during the search

All vertices are initially white , s is almost immediately coloured
grey .

All white vertices are “undiscovered.”

“Discovered” vertices are either grey or black. Vertices on the
boundary between discovered and undiscovered vertices are
grey . Other discovered vertices are black .

Unlike DFS, when a grey vertex t is processed, all white neighbours
are recoloured grey; t is then coloured black.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 4 / 23



Algorithm

Typical Search Pattern

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 5 / 23

Algorithm

Data and Data Structures

The following information is maintained for each u ∈ V :

colour [u]: Colour of u

d [u]: Distance of u from s

π[u]: Parent of u in tree being constructed

In order to ensure that the search is performed in a “breadth-first” way,
a queue is used to store grey nodes

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 6 / 23

Algorithm

Pseudocode

BFS(G, s)
{Initialization}
for each vertex u ∈ V do

colour [u] = white {mark all vertices as undiscovered}
d [u] = +∞
π[u] = NIL

end for
colour [s] = grey {start with source vertex s}
d [s] = 0 {path from s to itself has distance 0}
π[s] = NIL {s is the root of the BFS tree (no parent)}
Initialize queue Q to be empty
enqueue(Q, s) {add first grey node s to the queue}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 7 / 23

Algorithm

Pseudocode, Continued

while (Q is not empty) do
u = dequeue(Q)
for each v ∈ Adj[u] do
{examine neighbours of u}
if colour [v ] == white then

colour [v ] = grey {discover each undiscovered neighbour}
d [v ] = d [u] + 1 {shortest path: s to u followed by (u, v)}
π[v ] = u {u is the predecessor on the shortest path}
enqueue(Q, v) {examine neighbours of v}

end if
end for
colour [u] = black {all neighbours of u have been discovered}

end while
return π, d

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 8 / 23



Example

Example

a b c

d e f

g h i

Q

a b c d e f g h i
d 0 1 2 1 2 3 2 3 4

π NIL a b a b c d e f

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 9 / 23

Analysis

Partial Correctness of Breadth-First Search

The shortest-path distance δ(s, v) from s to v is the minimum number
of edges on a path from s to v .

Theorem 1

Let G = (V , E) be a directed or undirected graph, and suppose BFS is
run on G from a given source vertex s ∈ V. Then each of the following
properties is satisfied on termination of the algorithm (if it terminates):

The predecessor subgraph Gp = (Vp, Ep) for the function π and
vertex s is a tree containing all of (and only those) vertices that
are reachable from s in G.

For all v ∈ V , d [v ] is the length of a shortest path from s to v in G,
and d [v ] = +∞ if and only if v is not reachable from s.

For every v ∈ V that is reachable from s, the path from s to v in
Gp is also a shortest path from s to v in G.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 10 / 23

Analysis

Useful Property of Distances

Lemma 2

Let G = (V , E) be a directed or undirected graph, and let s ∈ V be an
arbitrary vertex. Then, for every edge (u, v) ∈ E , δ(s, v) ≤ δ(s, u) + 1.

Proof.
If u is reachable from s :

one path from s to v : shortest path to u followed by edge (u, v)

shortest path to v is at most as long as this path (δ(s, u) + 1)

Otherwise, δ(s, u) = ∞ and the inequality holds.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 11 / 23

Analysis

Lemma: Distance Inequality

Lemma 3

Let G = (V , E) be a directed or undirected graph, and suppose BFS is
run on G from a given source vertex s ∈ V. Then, if BFS terminates,
for each vertex v ∈ V, the value d [v ] calculated by the algorithm
satisfies the inequality d [v ] ≥ δ(s, v).

Proof: induction on the number of enqueue operations

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 12 / 23



Analysis

Proof of Distance Inequality

Proof.
Base case (s is enqueued):

d [s] = δ(s, s) = 0, and d [v ] = ∞ ≥ δ(s, v) for all v ∈ V − {s}

Inductive step (white vertex v discovered during the search from u):

d [u] ≥ δ(s, u) by inductive hypothesis

algorithm sets d [v ] = d [u] + 1 ≥ δ(s, u) + 1

thus, by Lemma 2, d [v ] ≥ δ(s, v)

v is coloured grey and enqueued

v is never enqueued again (only new grey nodes are enqueued)

d [v ] never changes again (inductive hypothesis is maintained)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 13 / 23

Analysis

Lemma: Enqueued Vertices

Lemma 4

Suppose that during the execution of BFS on a graph G = (V , E), the
queue Q contains vertices 〈v1, v2, . . . , vr 〉, where v1 is the head of Q
and vr is the tail of Q. Then d [vr ] ≤ d [v1] + 1 and d [vi ] ≤ d [vi+1] for
1 ≤ 2 ≤ r − 1.

Interpretation of Lemma:

second inequalities: d values of vertices in Q are increasing

first inequality: there are at most two distinct d values for all
vertices in Q

Proof: induction on the number of queue operations

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 14 / 23

Analysis

Proof (Enqueued Vertices Lemma)

Proof.
Base case (Q contains only s) holds trivially

Inductive step (Lemma holds after enqueuing or dequeing a vertex):
1 if v1 is dequeued, v2 becomes the new head

by the inductive hypothesis d [v1] ≤ d [v2]
thus d [vr ] ≤ d [v1] + 1 ≤ d [v2] + 1

2 if vr+1 is enqueued
vertex u previously removed, so d [v1] ≥ d [u] by hypothesis
thus d [vr+1] = d [u] + 1 ≤ d [v1] + 1
by hypothesis d [vr ] ≤ d [u] + 1, so d [vr ] ≤ d [vr+1]

Thus, after either operation, the lemma holds.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 15 / 23

Analysis

Lemma: Distance and Queue Order

Lemma 5

Suppose that vertices vi and vj are enqueued during the execution
of BFS, and that vi is enqueued before vj . Then d [vi ] ≤ d [vj ] at the
time vi is enqueued.

Proof.
Follows from Lemma 4, and the fact that each vertex only receives a
finite d value once.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 16 / 23



Analysis

Lemma: Correctness of Distance

Lemma 6

If a vertex v is enqueued at any point during the execution of the
algorithm, then v is reachable from s. Furthermore, the value d [v ] that
is set immediately before v is enqueued is equal to δ(s, v).

See handout for complete proof.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 17 / 23

Analysis

Outline of Proof (Correctness of Distance Lemma)

Assume v is the vertex with smallest δ(s, v) value for which d [v ] is
incorrect

By Lemma 3 d [v ] ≥ δ(s, v) ⇒ d [v ] > δ(s, v)

Suppose u precedes v on the shortest path from s to v .

δ(s, u) < δ(s, v), so by our choice of v we have d [u] = δ(s, u)

Thus d [v ] > δ(s, v) = δ(s, u) + 1 = d [u] + 1

Proceed by arguing that when u is dequeued, the inequality

d [v ] > d [u] + 1

is violated.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 18 / 23

Analysis

Proof Outline (continued)

When u is dequeued, its neighbour v is either white, grey, or black:
1 if white, then algorithm sets d [v ] = d [u] + 1 (contradiction)
2 if black, v was already removed from the queue and by Lemma 5

d [v ] ≤ d [u] (contradiction)
3 if grey, v was coloured after removing another vertex w before u :

d [v ] = d [w ] + 1, but by Lemma 5 d [w ] ≤ d [u]
thus d [v ] ≤ d [u] + 1 (contradiction)

In all three cases, we have a contradiction to the inequality
d [v ] > d [u] + 1

Thus, we must have d [v ] = δ(s, v) as required

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 19 / 23

Analysis

Lemma: Completeness of Predecessor Subgraph

Lemma 7

Suppose the BFS algorithm is run with a graph G = (V , E) and
vertex s ∈ V as input. If the algorithm terminates then, on termination,
the predecessor subgraph for the function π and vertex s includes all of
the vertices in G (and, only those vertices) that are reachable from s.

Proof.
By Lemma 6, all v ∈ V that are enqueued are reachable from s

Algorithm sets π[v ] = u when v is enqueued.

Thus, all vertices in the predecessor subgraph (π[v ] 6= NIL) are
reachable from s.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 20 / 23



Analysis

Proof of Theorem 1 (partial correctness of BFS)

Proof.
First point follows from Lemma 7.

Second point follows from Lemma 6

The third point holds because:

if π[v ] = u, then d [v ] = d [u] + 1 (from the pseudocode)

shortest path from s to π[v ] followed by the edge (π[v ], v) has
minimal length d [u] + 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 21 / 23

Analysis

Efficiency

Theorem 8
Let G = (V , E) be a directed or undirected graph, and suppose BFS is
run on G from a given source vertex s ∈ V. Then the algorithm
terminates after performing O(|V |+ |E |) operations.

Proof.
Each vertex is enqueued and dequeued at most once — O(|V |)
Adjacency list of each vertex is scanned once — total for all
vertices is Θ(|E |)
cost of initialization is O(|V |)

Thus, total cost is O(|V |+ |E |).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 22 / 23

References

References

Text, Section 12.4: A similar version of the algorithm that does not
compute and return the distances of vertices from the input node.

Introduction to Algorithms, Section 22.3: More details about the
version of the algorithm presented here.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 23 / 23


	Introduction
	Algorithm
	Example
	Analysis
	References

