

Depth-First Search

Algorithm to search a graph in *depth-first* order:

 Given a graph G and a vertex s, the algorithm finds the *depth-first* tree, that is, a tree with root s whose edges are chosen by searching as deeply down a path as possible before "backtracking."

Introduction

Reference: Text, Section 12.4, beginning on p.647, describes a similar version of the algorithm that also returns the order in which vertices are discovered and the order in which processing on vertices finishes.

Idea

Problem: graphs can have *cycles* and we need to avoid following cycles (resulting in infinite loops)

Algorithm

Solution: keep track of the nodes that have been visited already, so that we don't visit them again

Details:

- initially all vertices are white
- carry out the following steps, beginning with node *s*.
 - Colour a node grey when a search from the node begins:
 - recursively search from each white neighbour (reachable by following an edge in the "forward" direction)
 - end the search by colouring the node black.

Typical Search Pattern

Pattern Near Beginning of Search:

Typical Search Pattern

Pattern Farther Along in Search:

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #31 5 / 24	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #31 6 / 24
Data and Pseudoco	Algorithm		Pseudocode, Conti	Algorithm	
The following information • $colour[u]$: Colour of • $\pi[u]$: Parent of u in the DFS (G, s) {Initialization — all nod for each vertex $u \in V$ of colour[u] = white $\pi[u] =$ NIL end for {Visit all vertices reach DFS-Visit (s) return π	is maintained for each $u \in u$ ree being constructed des initially white (undiscove do nable from <i>s</i> }	V: ered)}	DFS-Visit(u) colour[u] = grey for each $v \in Adj[u]$ do if $colour[v] ==$ white $\pi[v] = u$ DFS-Visit(v) end if end for colour[u] = black	e then	

Example

π NIL

Example

Example, continued

Step 2

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #31	9/24
	Example		
— , ,,			
Example, continue	ed		

Step 6

Step 7

Step 8

Lecture #31 10 / 24

Example, continued

Step 10

Step 14

b c d e f g h i

Example

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #31	13 / 24
	Example		
Example, continue	ed		

Lecture #31 14 / 24

Example, continued

Step 15

Mike Jacobson (University of Calgary)

b

а

π NIL

Step 13

c d e f g h i

а

π NIL

Example

Specification of Requirements

A more formal "specification of requirements" for DFS can now be supplied.

Pre-Condition: G = (V, E) is a graph and $s \in V$

Post-Condition:

- The predecessor graph G_p = (V_p, E_p) corresponding to the function π and vertex s is the depth-first tree with root s.
- The graph G has not been changed.

Recall that

- $V_p = \{s\} \cup \{v \in V \mid \pi[v] \neq \mathsf{NIL}\}$
- $E_{\rho} = \{(\pi[v], v) \mid v \in V \text{ and } \pi[v] \neq \mathsf{NIL}\}$

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #31 17 / 24 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #31 18 / 24

Behaviour of DFS-Visit

Let $u \in V$.

 If DFS-Visit is ever called with input *u* then *colour*[*u*] = white immediately *before* this function is called with this input, and *colour*[*u*] = black on termination, if this function terminates.

The following notation will be useful when discussing properties of this algorithm.

- Consider the *colour* function just **before** DFS-Visit is called with input *u*. Let
 - $V_u = \{v \in V \mid \textit{colour}[v] = white\},\$
 - $G_u = (V_u, E_u)$ be the induced subgraph of *G* corresponding to the subset V_u .

Additional Useful Notation:

Behaviour of DFS-Visit

- Consider the function π immediately **after** this call to DFS-Visit terminates (if it terminates at all).
 - Let $\pi_u : V_u \to V_u \cup \{\text{NIL}\}$ such that, for a node $v \in V_u$,

$$\pi_u(v) = \begin{cases} \pi(v) & \text{if } v \neq u, \\ \text{NIL} & \text{if } v = u. \end{cases}$$

Let G_{p,u} = (V_{p,u}, E_{p,u}) be the predecessor subgraph of G_u corresponding to the function π_u and the vertex u.

Analysis Partial Correctness

Behaviour of DFS-Visit

Theorem 1

Suppose that this execution of DFS-Visit terminates. Then

- $G_{p,u}$ is a depth-first tree for the graph G_u and the vertex u.
- The graph G has not been changed by this execution of DFS-Visit.
- If *v* ∈ *V_u* then colour[*v*] = black if *v* ∈ *V_{p,u}*, and colour[*v*] = white otherwise, immediately after termination
- If v ∈ V but v ∉ V_u then neither colour[v] nor π[v] have been changed by this execution of DFS-Visit.
- $\pi[u]$ has not been changed by this execution of DFS-Visit.

Method of proof.Induction on $|V_u|$.

Mike Jacobson (University of Calgary)

Computer Science 331

Analysis Termination and Running Time

Running Time

Theorem 3

Suppose G = (V, E) is a directed or undirected graph, and suppose DFS is run on G and a vertex $v \in S$. Then the algorithm terminates after O(|V| + |E|) operations.

Sketch of Proof.

Theorem 2

If DFS is executed with an input graph G and vertex $s \in G$ (so that the given pre-condition is satisfied) then either the post-condition is satisfied on termination of this algorithm or the algorithm does not terminate at all.

Method of Proof.

Notice that this follows by inspection of the code, using the result about DFS-Visit that has just been established.

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #31 22 / 24

Iteration in Depth-First Order

Iteration in Depth-First Order

Partial Correctness of DFS

Some applications require that the vertices in a graph that are reachable from a vertex *s* be accessed in "depth-first" order.

To list the nodes in this order, modify the given algorithms as follows:

- Delete references to the array π (this is no longer needed)
- Visit a node as soon as it is coloured **grey**

The worst-case cost is in $\Theta(|V| + |E|)$ once again.

Lecture #31

21/24