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Introduction

Depth-First Search

Algorithm to search a graph in depth-first order:

Given a graph G and a vertex s, the algorithm finds the depth-first
tree, that is, a tree with root s whose edges are chosen by
searching as deeply down a path as possible before
“backtracking.”

Reference: Text, Section 12.4, beginning on p.647, describes a similar
version of the algorithm that also returns the order in which vertices
are discovered and the order in which processing on vertices finishes.
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Algorithm

Idea

Problem: graphs can have cycles and we need to avoid following
cycles (resulting in infinite loops)

Solution: keep track of the nodes that have been visited already, so
that we don’t visit them again

Details:

initially all vertices are white
carry out the following steps, beginning with node s.

Colour a node grey when a search from the node begins:
recursively search from each white neighbour (reachable by
following an edge in the “forward” direction)
end the search by colouring the node black.
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Algorithm

Typical Search Pattern

Pattern Near Beginning of Search:
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Algorithm

Typical Search Pattern

Pattern Farther Along in Search:
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Algorithm

Data and Pseudocode

The following information is maintained for each u ∈ V :

colour [u]: Colour of u

π[u]: Parent of u in tree being constructed

DFS(G, s)
{Initialization — all nodes initially white (undiscovered)}
for each vertex u ∈ V do

colour [u] = white
π[u] = NIL

end for
{Visit all vertices reachable from s}
DFS-Visit (s)
return π
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Algorithm

Pseudocode, Continued

DFS-Visit (u)
colour [u] = grey
for each v ∈ Adj[u] do

if colour [v ] == white then
π[v ] = u
DFS-Visit (v )

end if
end for
colour [u] = black
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Example

Example

Step 1

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 2

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Example

Example, continued

Step 3

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 4

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Example

Example, continued

Step 5

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 6

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Example

Example, continued

Step 7

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 8

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Example

Example, continued

Step 9

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 10

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Example

Example, continued

Step 11

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 12

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Example

Example, continued

Step 13

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 14

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Example

Example, continued

Step 15

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 16

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Example

Example, continued

Step 17

a b c

d e f

g h i

a b c d e f g h i
π NIL

Step 18

a b c

d e f

g h i

a b c d e f g h i
π NIL
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Analysis Partial Correctness

Specification of Requirements

A more formal “specification of requirements” for DFS can now be
supplied.

Pre-Condition: G = (V , E) is a graph and s ∈ V

Post-Condition:

The predecessor graph Gp = (Vp, Ep) corresponding to the
function π and vertex s is the depth-first tree with root s.

The graph G has not been changed.

Recall that

Vp = {s} ∪ {v ∈ V | π[v ] 6= NIL}
Ep = {(π[v ], v) | v ∈ V and π[v ] 6= NIL}
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Analysis Partial Correctness

Behaviour of DFS-Visit

Let u ∈ V .

If DFS-Visit is ever called with input u then colour [u] = white
immediately before this function is called with this input, and
colour [u] = black on termination, if this function terminates.

The following notation will be useful when discussing properties of this
algorithm.

Consider the colour function just before DFS-Visit is called with
input u. Let

Vu = {v ∈ V | colour[v ] = white},
Gu = (Vu, Eu) be the induced subgraph of G corresponding to the
subset Vu.
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Analysis Partial Correctness

Behaviour of DFS-Visit

Additional Useful Notation:
Consider the function π immediately after this call to DFS-Visit
terminates (if it terminates at all).

Let πu : Vu → Vu ∪ {NIL} such that, for a node v ∈ Vu,

πu(v) =

{
π(v) if v 6= u,
NIL if v = u.

Let Gp,u = (Vp,u, Ep,u) be the predecessor subgraph of Gu

corresponding to the function πu and the vertex u.
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Analysis Partial Correctness

Behaviour of DFS-Visit

Theorem 1
Suppose that this execution of DFS-Visit terminates. Then

Gp,u is a depth-first tree for the graph Gu and the vertex u.

The graph G has not been changed by this execution of DFS-Visit.

If v ∈ Vu then colour[v ] = black if v ∈ Vp,u, and colour[v ] = white
otherwise, immediately after termination

If v ∈ V but v /∈ Vu then neither colour[v ] nor π[v ] have been
changed by this execution of DFS-Visit.

π[u] has not been changed by this execution of DFS-Visit.

Method of proof.
Induction on |Vu|.
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Analysis Partial Correctness

Partial Correctness of DFS

Theorem 2
If DFS is executed with an input graph G and vertex s ∈ G (so that the
given pre-condition is satisfied) then either the post-condition is
satisfied on termination of this algorithm or the algorithm does not
terminate at all.

Method of Proof.
Notice that this follows by inspection of the code, using the result about
DFS-Visit that has just been established.
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Analysis Termination and Running Time

Running Time

Theorem 3
Suppose G = (V , E) is a directed or undirected graph, and suppose
DFS is run on G and a vertex v ∈ S. Then the algorithm terminates
after O(|V |+ |E |) operations.

Sketch of Proof.
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Iteration in Depth-First Order

Iteration in Depth-First Order

Some applications require that the vertices in a graph that are
reachable from a vertex s be accessed in “depth-first” order.

To list the nodes in this order, modify the given algorithms as follows:

Delete references to the array π (this is no longer needed)

Visit a node as soon as it is coloured grey

The worst-case cost is in Θ(|V |+ |E |) once again.
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