

Introduction

Computation of Spanning Trees

Motivation:

- Given a set of sites (represented by vertices of a graph), find paths connecting them all (or as many as possible) together.
- May be interested in cheapest possible connections (using connections represented by the edges of a weighted graph) or discovering which sites are reachable from any given site (search).

Goal for Today:

• Provide definitions and establish properties of trees and spanning trees required to solve these problems.

Reference:

• Introduction to Algorithms, Appendix B4 and B5

000

Trees

Trees

Definition: A *free tree* is a connected acyclic graph.

Definition

Frequently we just call a free tree a "tree."

• If we identify one vertex as the "root," then the result is the kind of "rooted tree" we have seen before.

Trees Properties

We will present various properties and relations between |V| and |E|

Properties

that characterize trees. Examples:

• If G is a tree then it has |V| - 1 edges

• An acyclic graph with |V| - 1 edges is a tree

• A connected graph with |V| - 1 edges is a tree

Reference: Introduction to Algorithms, Appendix B.5

Trees Properties

Existence of Vertex With Degree At Most 1

Lemma 1

If G = (V, E) is a graph such that $|V| \ge 2$ and |E| < |V| then there exists a vertex $v \in V$ whose degree d(v) < 1.

Proof (by contradiction).

For any graph G, $\sum_{v \in V} d(v) = 2|E|$ (each edge counted twice)

If d(v) > 2 for every $v \in V$, then

$$2|E| = \sum_{v \in V} d(v) \ge \sum_{v \in V} 2 = 2|V|$$

so that $|E| \ge |V|$ — contradiction.

Thus, at least one vertex has degree at most one.

```
Mike Jacobson (University of Calgary)
```

Computer Science 331

Lecture #30 6/22

Trees Properties

Property of Cyclic Graphs

Lemma 3

If G = (V, E) and each vertex $v \in V$ has degree at least two then G includes a cycle.

Proof.

Pick $v_1 \in V$, follow edges in *E* to reach v_1, v_2, \ldots until either

some vertex appears for the second time, or

2 all edges incident to the current vertex have been used Notice that:

• one of these cases must arise (because |V| and |E| are finite)

• if every $v \in V$ has $d(v) \ge 2$, then Case 1 occurs before Case 2 Thus, G includes a cycle.

Lemma 2 If G = (V, E) is connected then $|E| \ge |V| - 1$. Proof (of contrapositive by induction on V). Contrapositive: If |E| < |V| - 1 then G is not connected Base case (|V| = 1): |E| < |V| - 1 = 0 implies G is not connected Suppose $|V| \ge 2$ and |E| < |V| - 1. By Lemma 1, $\exists v$ with $d(v) \le 1$. If d(v) = 0: G is not connected (v has no edges).

2 If d(v) = 1: let G' = (V', E') be obtained by removing v and its one edge (so |E'| = |E| - 1 and |V'| = |V| - 1).

- |E'| < |V'| 1, and by the induction hypothesis G' is not connected.
- G is also not connected (adding vertex and one incident edge).

like Jacobson (University of Calgary)

Lecture #30

5/22

Trees Properties Connected Graph has at Least |V| - 1 Edges

Computer Science 331

Trees Properties

Acyclic Graph has at Most |V| - 1 Edges

Lemma 4

If G = (V, E) is acyclic then $|E| \le |V| - 1$.

Proof (of contrapositive by induction on $ V $).	

Computer Science 331

A Tree has |V| - 1 Edges

Corollary 5

If G = (V, E) is a tree then |E| = |V| - 1.

Trees Properties Acyclic Graph with |V| - 1 Edges is a Tree

Lemma 6

Mike Jacobson (University of Calgary)

If G = (V, E) is acyclic and |E| = |V| - 1 then G is a tree.

Proof (induction on $ V $).		

Connected Graph with |V| - 1 Edges is a Tree

Trees

Properties

Lemma 7

If G = (V, E) is connected and |E| = |V| - 1 then G is a tree.

Proof (induction on $ V $)		

Lecture #30

9/22

Spanning Trees

Spanning Trees

Spanning Trees

Example

Suppose G = (V, E) is as follows.

- If G = (V, E) is a connected undirected graph, then a *spanning tree* of *G* is a subgraph $\widehat{G} = (\widehat{V}, \widehat{E})$ of *G* such that
 - $\hat{V} = V$ (so that \hat{G} includes all the vertices in *G*)
 - \widehat{G} is a tree.

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #30	13 / 22
	Spanning Trees		
	opanning nood		
Example Tree 1			

Is the following graph	$G_1 = ($	(V_1, E_1)	a spanning tree of	f G ?

Spanning Trees
Example Tree 2

Computer Science 331

Is the following graph $G_2 = (V_2, E_2)$ is also a spanning tree of G?

Mike Jacobson (University of Calgary)

Lecture #30

14/22

Spanning Trees

Predecessor Subgraphs Subgraphs and Induced Subgraphs

Example Tree 3

Is the following graph $G_3 = (V_3, E_3)$ is also a spanning tree of *G*?

Suppose G = (V, E) is a graph.

- $\widehat{G} = (\widehat{V}, \widehat{E})$ is a *subgraph* of *G* if \widehat{G} is a graph such that $\widehat{V} \subseteq V$ and $\widehat{E} \subseteq E$
- $\widetilde{G} = (\widetilde{V}, \widetilde{E})$ is an *induced subgraph* of G if
 - \widetilde{G} is a subgraph of G and, furthermore
 - $\widetilde{E} = \left\{ (u, v) \in E \mid u, v \in \widetilde{V} \right\}$, that is, \widetilde{G} includes *all* the edges from *G* that it possibly could

Mike Jacobson (University of Calgary)	Computer S	Science 331	Lecture	#30 17 / 22	Mike Jacobson (University of Calgary)	Computer	Science 331	Lecture #30	18,
Pre	edecessor Subgraphs	Subgraphs and Indu	iced Subgraphs		Pr	edecessor Subgraphs	Predecessor Subgra	aphs	
Example					Predecessor Sub	oranhs			

 G_2 is an *induced subgraph* of G_1 .

 G_3 is a subgraph of G_1 , but G_3 is **not** an *induced* subgraph of G_1 .

Let G = (V, E) be a graph and suppose there is a function $\pi : V \to V \cup \{\text{NIL}\}$ such that for some $s \in V$

- $V_{\rho} = \{s\} \cup \{v \in V \mid \pi(v) \neq \mathsf{NIL}\}$
- $E_{\rho} = \{(\pi(v), v) \mid v \in V \text{ and } \pi(v) \neq \mathsf{NIL}\}$
- $G_{\rho} = (V_{\rho}, E_{\rho})$

We will require that subsequent algorithms construct G_p such that it is a subgraph of *G* and a tree.

Idea:

- $\pi(v)$ denotes the predecessor of v found by the algorithm
- collection of edges $(\pi(v), v)$ forms a spanning tree of G_p

Subgraph Property

Claim:

If, given G and $s \in V$, π is a function for which $G_p = (V_p, E_p)$ is as above, then

- $\pi(v) \in V_p$ whenever $v \in V$ and $\pi(v) \neq NIL$ and
- $(\pi(v), v) \in E$ whenever $v \in V$ and $\pi(v) \neq NIL$

Method of Proof.

Argue the two points in the Claim based on algorithm employed.

Conclusion: G_{ρ} is a subgraph of *G*.

Mike Jacobson	(University of Calgary)	

Computer Science 331

Lecture #30 21 / 22

Mike Jacobson (University of Calgary) Com

Computer Science 331

Lecture #30 22 / 22

Tree Property

Claim:

If, given G and $s \in V$, π is a function for which $G_p = (V_p, E_p)$ is as above, then G_p is a tree.

Method of Proof.

Based on properties of the the algorithm:

- Argue that every vertex in *V_p* is reachable from *s*, implying that *G_p* is connected.
- $|E_p| = |V_p| 1$, as the edges in E_p are $(\pi(v), v)$ for which $v \in V_p$ and $\pi(v) \neq NIL$
 - one edge for each $v \in V_p \setminus \{s\}$

By Lemma 7, G_p is a tree.