Outline

Computer Science 331

Graphs and Their Representations

Mike Jacobson
Department of Computer Science
University of Calgary

Lecture \#29

Introduction

Undirected Graphs

An undirected graph $G=(V, E)$ consists of

- a finite, nonempty set V of vertices or "nodes"
- a set E of edges, where each "edge" is an unordered pair of distinct elements of V

Also may be written as $V(G)$ and $E(G)$ to indicate association to a particular graph.

Undirected graphs, and their generalizations, can be used to model

- communication networks
- knowledge and data bases

Graphs and their algorithms will be studied for the rest of this course.IntroductionRepresentations

- Adjacency-Matrices
- Adjacency-ListsGeneralizations
- Directed Graphs
- Weighted GraphsReferences

$G:$

$G=(V, E)$ where
- $V=\{0,1,2,3,4,5,6\}$
- $E=\{(0,1),(1,2),(1,3),(2,3),(2,4),(4,6),(5,6)\}$

The following operations should be supported:

- Creation: It should be possible to
- initialize a graph to be empty (with no vertices or edges),
- add another vertex
- add an edge (between a pair of existing vertices that are not already neighbours);
- Queries: It should be possible to
- ask whether a given pair of vertices are neighbours,
- determine the number of vertices,
- determine the number of edges;
- Iterate: It should be possible to iterate over
- the set of vertices in the graph, as well as
- the set of neighbours of any given vertex.

See pages 670-671 in Chapter 13 for a "Graph ADT"

Representations Adjacency-Matrices
 Adjacency-Matrix Representation

Example

Note: A_{G} is a symmetric matrix: $a_{i, j}=a_{i, i}$ for $0 \leq i, j<|V|$.

Properties

Properties of This Representation:

- simple
- reasonably space-efficient if G is dense
- not space-efficient if G is sparse!
- possible to add an edge or determine whether two vertices are neighbours in constant time
- iterating over the set of neighbours of a vertex requires $\Theta(|V|)$ operations, even if G is sparse
... a good choice if G is small or dense, not if large and sparse

The adjacency-list representation of $G=(V, E)$ consists of an array $A d j_{G}$ of $|V|$ lists, one for each vertex in V.

For each $u \in V$, the adjacency list $\operatorname{Adj}_{G}(u)$ contains (pointers to) all the vertices $v \in V$ such that $(u, v) \in E$.
Example \quad Representations Adjacency-Lists
Properties \quad Representations Adjacency-Lists

Properties of This Representation:

- space-efficient if G is sparse
- not really space-efficient if G is (extremely) dense!
- checking whether a pair of vertices are neighbours requires more than constant time - number of operations is linear in the degree of one of the inputs, in the worst case
- adding an edge also requires this cost (if error checking is to be included)
- iterating over the set of neighbours of a vertex is efficient: Number of operations used is linear in the degree of the input vertex
... a good choice if G is large and sparse; not if small or dense
$G:$
Adjacency-Matrix:

Example Generalizations Directed Graphs
Weneralizations Weighted Graphs
$G:$

Adjacency-List:
A weighted graph is an undirected or directed graph $G=(V, E)$ for which each edge has an associated weight.

The weights are typically given an associated weight function

$$
w: E \rightarrow \mathbb{R}
$$

Weighted graphs can be represented using adjacency-matrices or adjacency lists as well.

Adjacency-Matrix:
G:
Adjacency-List:

References Relerences

Graphs in Java

- Java's standard libraries do not currently include implementations of graphs or graph algorithms
- Chapter 12 of the text includes various "Graph ADTs" and implementations in Java.

Reading Assignment: Please read
Section 12.1
for additional definitions and terminology

