Computer Science 331
 Merge Sort

Mike Jacobson
Department of Computer Science
University of Calgary
Lecture \#23IntroductionMerging

- Description
- AnalysisMerge Sort
- Description
- Analysis

The "Merging" Problem

Merge Sort is is an asymptotically faster algorithm than the sorting algorithms we have seen so far.

- It can be used to sort an array of size n using $\Theta\left(n \log _{2} n\right)$ operations in the worst case.

Presented here: A version that takes an input array A and produces another sorted array B (containing the entries of A, rearranged)

A solution to the "Merging Problem" (presented next) is a subroutine that is used to do much of the work.

Reference: Textbook, Section 10.7

Calling Sequence: merge $\left(A_{1}, A_{2}, B\right)$

Precondition:

- A_{1} is a sorted array of length $n_{1} \in \mathbb{N}$, so that

$$
A_{1}[h] \leq A_{1}[h+1] \quad \text { for } 0 \leq h \leq n_{1}-2
$$

- A_{2} is a sorted array of length $n_{2} \in \mathbb{N}$, so that

$$
A_{2}[h] \leq A_{2}[h+1] \quad \text { for } 0 \leq h \leq n_{2}-2
$$

- Entries of A_{1} and A_{2} are objects of the same ordered type

Postcondition:

- B is a sorted array of length $n_{1}+n_{2}$, so that

$$
B[h] \leq B[h+1] \quad \text { for } 0 \leq h \leq n_{1}+n_{2}-2
$$

- Entries of B are the entries of A_{1} together with the entries of A_{2}, reordered but otherwise unchanged
- A_{1} and A_{2} have not been modified

Maintain indices into each array (each initially pointing to the leftmost element)

repeat

- Compare the current elements of each array
- Append the smaller entry onto the "end" of B, advancing the index for the array from which this entry was taken
until one of the input arrays has been exhausted
Append the rest of the other input array onto the end of B
Pseudocode Merging Description

Pseudocode, Continued

```
merge( }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},B
    n}=l=length(\mp@subsup{A}{1}{});\mp@subsup{n}{2}{}=length(\mp@subsup{A}{2}{}
    Declare B to be an array of length n}\mp@subsup{n}{1}{}+\mp@subsup{n}{2}{
    i}=0;\mp@subsup{i}{2}{}=0;j=
    while (i, < n ) and (i2< n
        if }\mp@subsup{A}{1}{}[\mp@subsup{i}{1}{}]\leq\mp@subsup{A}{2}{}[\mp@subsup{i}{2}{}]\mathrm{ then
            B[j]=A}=\mp@subsup{A}{1}{}[\mp@subsup{i}{1}{}];\mp@subsup{i}{1}{}=\mp@subsup{i}{1}{}+
            else
            B[j]=A2[i, ]; i i = i i +1
        end if
        j=j+1
    end while
```

 \{Copy remainder of \(A_{1}\) (if any) \(\}\)
 while \(i_{1}<n_{1}\) do
 \(B[j]=A_{1}\left[i_{1}\right] ; i_{1}=i_{1}+1 ; j=j+1\)
 end while
 \{Otherwise copy remainder of \(A_{2}\) \}
 while $i_{2}<n_{2}$ do
$B[j]=A_{2}\left[i_{2}\right] ; i_{2}=i_{2}+1 ; j=j+1$
end while

$\underline{j=0, i_{1}=0, i_{2}=0}$
\square
$\underline{j=1, i_{1}=, i_{2}=}$
B.

\bullet

```
\(\square\)
j=2, i
j=2, i

\section*{Loop Invariant for Loop \#1}

After the \(k^{\text {th }}\) execution of the body of the first loop
- \(n_{1}=\operatorname{length}\left(A_{1}\right) \in \mathbb{N} ; n_{2}=\operatorname{length}\left(A_{2}\right) \in \mathbb{N} ; i_{1}, i_{2}, j \in \mathbb{N} ;\)
- \(0 \leq i_{1} \leq n_{1}\) and \(0 \leq i_{2} \leq n_{2}\);
- \(j=k=i_{1}+i_{2}\);
- \(B[h] \leq B[h+1]\) for \(0 \leq h \leq j-2\);
- \(B[0], B[1], \ldots, B[j-1]\) are the values
\[
A_{1}[0], A_{1}[1], \ldots, A_{1}\left[i_{1}-1\right] \quad \text { and } \quad A_{2}[0], A_{2}[1], \ldots, A_{2}\left[i_{2}-1\right],
\]
reordered but otherwise unchanged;
- if \(j \geq 1\) and \(i_{1}<n_{1}\) then \(B[j-1] \leq A_{1}\left[i_{1}\right]\)
- if \(j \geq 1\) and \(i_{2}<n_{2}\) then \(B[j-1] \leq A_{2}\left[i_{2}\right]\)
- The arrays \(A_{1}\) and \(A_{2}\) have not been changed.

\section*{Loop Invariant for Loop \#2:}

Same as the loop invariant for loop \#1, along with the additional condition
\[
\text { either } i_{1}=n_{1} \text { or } i_{2}=n_{2}
\]

\section*{Loop Variant for Loop \#2: Same as for loop \#1.}

\section*{Conclusions:}
-
-

\section*{Merging Analysis}

\section*{Analysis of the Merging Algorithm}

Correctness:
- loop invariants prove partial correctness (if merge terminates, the output is correct)
- loop variant implies that the for loops (and hence the entire algorithm) terminate
- therefore, merge is correct

\section*{Efficiency:}
- Each of the three loops executes no more than \(n_{1}+n_{2}\) times
- each loop body requires a constant number of steps
- total cost of merge is \(\Theta\left(n_{1}+n_{2}\right)\)

\section*{Loop Invariant for Loop \#3:}

Same as the loop invariant for loop \#1, along with the additional condition
\[
i_{1}=n_{1}
\]

Loop Variant for Loop \#3: Same as for loop \#1.

\section*{Conclusions:}
-
\(-\)

\section*{Merge Sort: Idea for an Algorithm}

Suppose we:
(1) Split an input array into two roughly equally-sized pieces.
(2) Recursively sort each piece.
(3) Merge the two sorted pieces.

This sorts the originally given array.
Note: this algorithm design strategy is known as divide-and-conquer.
- divide the original problem (sorting an array) into smaller subproblems (sorting smaller arrays)
- solve the smaller subproblems recursively
- combine the solutions to the smaller subproblems (the sorted subarrays) to obtain a solution to the original problem (merging the sorted arrays)
```

Merge Sort(A, B)
$n=\operatorname{length}(A)\{$ Assumption: $n \geq 1\}$
if $n==1$ then
$B[0]=A[0]\{B$ created with length 1$\}$
else
$n_{1}=\lceil n / 2\rceil$
$n_{2}=n-n_{1}\left\{\right.$ so that $\left.n_{2}=\lfloor n / 2\rfloor\right\}$
Set A_{1} to be $A[0], \ldots, A\left[n_{1}-1\right]$ (length $\left.n_{1}\right)$
Set A_{2} to be $A\left[n_{1}\right], \ldots, A[n-1]$ (length n_{2})
mergeSort $\left(A_{1}, B_{1}\right)$
mergeSort $\left(A_{2}, B_{2}\right)$
$\operatorname{merge}\left(B_{1}, B_{2}, B\right)$
end if

```

\section*{Proof of Partial Correctness}

\section*{Theorem 1}

If mergeSort is run on an input array \(A\) of size \(n\), then either
- the algorithm eventually halts, producing the desired sorted array \(B\) as output,
or
the algorithm does not halt at all.

Prove by induction on \(n\)
- prove partial correctness for \(n=1\)
- prove partial correctness for \(n>1\) assuming partial correctness for arrays of size \(k\) for \(k<n\)

(1) Sort \(A[0, \ldots, 3]=[7,3,9,6]\) recursively:
\(-\)

\section*{\(\bullet\)}

0
-
\(-\)
(2) Sort \(A[4, \ldots, 7]=[5,2,1,8]\) recursively.
(3) Merge: result is [1, 2, 3, 5, 6, 7, 8, 9]

Base Case: \(n=1\)
- if \(n=1\), array consists of one element (array is sorted trivially)
- algorithm returns \(B\) containing a copy of the single element in the array (terminates with correct output)
Inductive hypothesis:
- assume the algorithm is partially correct for arrays of size \(k<n\) Prove that \(B\) is sorted under this assumption:

\section*{Termination and Efficiency}

Let \(T(n)\) be the number of steps used by this algorithm when given an input array of length \(n\), in the worst case.

We can see the following by inspection of the code:
\[
T(n) \leq \begin{cases}c_{0} & \text { if } n=1 \\ T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+c_{1} n & \text { if } n \geq 2\end{cases}
\]
for some constants \(c_{0}\) and \(c_{1}\).
Special Case: If \(n=2^{k}\) is a power of two, we can rewrite this as
\[
T(n) \leq \begin{cases}c_{0} & \text { if } n=1 \\ 2 T(n / 2)+c_{1} n & \text { if } n \geq 2\end{cases}
\]

\section*{Termination and Efficiency}

Inductive hypothesis: Assume \(k>0\) and theorem holds for \(k-1\) :
Show that the theorem holds for \(k\) :

\section*{Termination and Efficiency}

\section*{Theorem 2}

If \(n=2^{k}\) is a power of two, and \(c=\max \left(c_{0}, c_{1}\right)\), then
\[
T(n) \leq c n \log _{2}(2 n)=c n(k+1)
\]

Prove by induction on \(k\)
- Base case \((k=0)\) : for \(k=0\) we have \(n=2^{0}=1\), and
\[
T(1)=c_{0} \leq c n(k+1)=c
\]
\[
\text { because } c=\max \left(c_{0}, c_{1}\right)
\]

Consider the function \(L(n)=\left\lceil\log _{2} n\right\rceil\) for \(n \geq 1\)
Useful Property:
- \(L(\lceil n / 2\rceil)=L(n)-1\) and \(L(\lfloor n / 2\rfloor) \leq L(n)-1\) for every integer \(n \geq 2\)

\section*{Theorem 3}

If \(n \geq 1\) then \(T(n) \leq c n L(2 n) \leq c n\left(\log _{2} n+2\right)\).

\section*{Further Observations}

It can be shown (by consideration of particular inputs) that the worst-case running time of this algorithm is also in \(\Omega\left(n \log _{2} n\right)\). It is therefore in \(\Theta\left(n \log _{2} n\right)\)
- This is preferable to the classical sorting algorithms, for sufficiently large inputs, if worst-case running time is critical
- The classical algorithms are faster on sufficiently small inputs because they are simpler

Alternative Approach: A "hybrid" algorithm:
- Use the recursive strategy given above when the input size is greater than or equal to some (carefully chosen) "threshold" value
- Switch to a simpler, nonrecursive algorithm (that is faster on small inputs) as soon as the input size drops to below this "threshold" value```

