Computer Science 331
Merge Sort

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #23
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 1/25

Introduction
Introduction

Merge Sort is is an asymptotically faster algorithm than the sorting
algorithms we have seen so far.

@ It can be used to sort an array of size n using ©(nlog, n)
operations in the worst case.

Presented here: A version that takes an input array A and produces
another sorted array B (containing the entries of A, rearranged)

A solution to the “Merging Problem” (presented next) is a subroutine
that is used to do much of the work.

Reference: Textbook, Section 10.7

e Introduction

e Merging
@ Description
@ Analysis

e Merge Sort
@ Description
@ Analysis

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 2/25

Merging Description

The “Merging” Problem

Calling Sequence: merge(A1, Az, B)

Precondition:

@ A; is a sorted array of length n; € N, so that
Ai[h] < Ajlh+1] for0<h<n; -2
@ A is a sorted array of length n, € N, so that
Azlh] < Azlh +1] for0<h<n,—-2

@ Entries of A; and A, are objects of the same ordered type

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #23 3/25

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 425

Merging Description Merging Description

The “Merging” Problem (cont.) Idea for an Algorithm

Maintain indices into each array (each initially pointing to the leftmost
Postcondition: element)

@ B is a sorted array of length n; + n,, so that
repeat

Bhj <Blh+1] forO<h<n;+n;—2 @ Compare the current elements of each array

@ Append the smaller entry onto the “end” of B, advancing the index
for the array from which this entry was taken

until one of the input arrays has been exhausted

@ Entries of B are the entries of A; together with the entries of A,,
reordered but otherwise unchanged

@ A; and A, have not been modified

Append the rest of the other input array onto the end of B

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 5/25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 6/25

Merging Description Merging Description
Pseudocode Pseudocode, Continued
merge (A1, Az, B)
n; = length(A;); nz = length(A;) {Copy remainder of A; (if any)}
Declare B to be an array of length n; + n, while i; < n; do
ip =0,i2=0,j=0 Bli] = Aqfia];in =1 +Lj=j+1
while (iy < np) and (i < ny) do end while
if Al[i]_] < Az[iz] then
Blj] =Aqfia];iz=i1+1 {Otherwise copy remainder of Ay}
else_ o _ while i < n, do
B[j] = Agfiz]; iz =12 +1 Blj] = Azlialiio =2+ 1 j=j+1
end if end while
j=]+1
end while

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 7125 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 8/25

Merging Description

Example

AL [1]3[5[6]8] A:[4[5[7]9]10]

j=0,i1=0,ip=0

BT[]
j=lih= ,ip=
B[[T T[]}
j=2,i= ,ip=
B[[T T[]}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23

Merging Analysis

Loop Invariant for Loop #1

After the k™ execution of the body of the first loop
@ n; = length(A;) € N; n, = length(Az) € N; iy, ip,j € N;
@ 0<ip<niand 0 <i, < ny;
@ j=Kk=liy+ip;
@ Blh] <BJh+1]for0<h<j—2;
@ B[0],B[1],...,B[j — 1] are the values

AL[O,AL[1],..., Adfir — 1] and A0}, Ax[1],...,Axlir — 1],

reordered but otherwise unchanged;
@ ifj > 1andi; < ngthen B[j — 1] < Aj]i1]
@ ifj > 1andi, < nythen B[j — 1] < Azliz]
@ The arrays A; and A, have not been changed.

Lecture #23

9/25

11/25

Merging Description

Example (cont.)

i=3i1= b= B[[[[[[[[]]]
i=4i= kb= B[[[[[[[[]]
i=5i= .= B[[[[[[[[]]
i=6i= .= B[[[[[[[[[]]
i=7i= b= B[[[[[[[[]]
=80y = ip—

Finalresult: B: [[[[[[[]]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 10/25

Merging Analysis

Analysis for Loop #1, Concluded

Loop Variant for Loop #1: f(ny,nz,j) =Ny +ny —]
@ loop invariant implies that j = i; + iy, so that

f(n1,nz2,j) = (N1 —i1) + (N2 — i2)
@ it follows, since iy < n; and i, < ny, thati; = n; and i, = ny if

f(nlvn27j) < 0
@ Initial value of j = 0, so worst-case # of iterations is < ny + n,

Application of Loop Invariant and Loop Variant: failure of the loop
test, and the loop invariant, implies that either iy = n; or i, = ny on
termination of the first loop. Conclusion:

]
(*]
(]

Lecture #23 12/25

Mike Jacobson (University of Calgary) Computer Science 331

Mike Jacobson (University of Calgary)

Computer Science 331

Merging Analysis

Analysis for Loop #2

Loop Invariant for Loop #2:
Same as the loop invariant for loop #1, along with the additional
condition

eitheri; =nyori; =ny

Loop Variant for Loop #2: Same as for loop #1.

Conclusions:
o
o
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 13/25

Merging Analysis

Analysis of the Merging Algorithm

Correctness:

@ loop invariants prove partial correctness (if merge terminates, the
output is correct)

@ loop variant implies that the for loops (and hence the entire
algorithm) terminate

@ therefore, merge is correct

Efficiency:
@ Each of the three loops executes no more than n; + n, times
@ each loop body requires a constant number of steps
@ total cost of merge is ©(n; + ny)

Merging Analysis

Analysis for Loop #3

Loop Invariant for Loop #3:
Same as the loop invariant for loop #1, along with the additional
condition

il =N7

Loop Variant for Loop #3: Same as for loop #1.

Conclusions:
®
o

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 14 /25

Merge Sort Description

Merge Sort: Idea for an Algorithm

Suppose we:
@ Split an input array into two roughly equally-sized pieces.
@ Recursively sort each piece.
© Merge the two sorted pieces.

This sorts the originally given array.

Note: this algorithm design strategy is known as divide-and-conquer:

@ divide the original problem (sorting an array) into smaller
subproblems (sorting smaller arrays)

@ solve the smaller subproblems recursively

@ combine the solutions to the smaller subproblems (the sorted
subarrays) to obtain a solution to the original problem (merging
the sorted arrays)

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #23 15/25

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 16 /25

Merge Sort Description

Pseudocode

Merge Sort (A, B)
n = length(A) {Assumption: n > 1}

if n == 1 then

B[O] = A[O] {B created with length 1}
else

ny = [n/2]

Ny =n-—n; {sothatny, = [n/2]}

Set A; to be A[Q],...,A[n; — 1] (length n;)
Set A, to be A[ny],...,A[n — 1] (length ny)
mergeSort (A1, By)

mergeSort (Az, B)

merge (B, B2, B)

end if
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 17/25

Merge Sort Analysis

Partial Correctness

If mergeSort is run on an input array A of size n, then either

@ the algorithm eventually halts, producing the desired sorted
array B as output,

or
@ the algorithm does not halt at all.

Prove by induction on n
@ prove partial correctness forn =1

@ prove partial correctness for n > 1 assuming partial correctness
for arrays of size k for k < n

Merge Sort Description

Example

01 2
A:[7]3]9]6]5]

@ SortA0,....3] =7,

3 4 6 7
6|5 1

[8]

5
2|
3,9, 6] recursively:

"]
]

Q SortA[4,...,7] =[5,2,1,8] recursively.
© Merge: resultis [1,2,3,5,6,7,8,9]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 18/25

Merge Sort Analysis

Proof of Partial Correctness

Base Case: n=1
@ if n = 1, array consists of one element (array is sorted trivially)

@ algorithm returns B containing a copy of the single element in the
array (terminates with correct output)

Inductive hypothesis:

@ assume the algorithm is partially correct for arrays of size k < n
Prove that B is sorted under this assumption:

°

°

°

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 19/25

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #23 20/25

Merge Sort Analysis Merge Sort Analysis

Termination and Efficiency Termination and Efficiency

Let T (n) be the number of steps used by this algorithm when given an
input array of length n, in the worst case.

We can see the following by inspection of the code: If n = 2 is a power of two, and ¢ = max(co, ¢1), then
Co ifn=1 T(n) <cnlog,(2n) =cn(k + 1).
T(n) <)
T([n/2])+T(|n/2])+cn ifn>2

for some constants cg and ¢ Prove by induction on k
0 l' @ Base case (k = 0): fork = 0we have n =2° = 1, and

. . _ k . . -
Special Case: If n = 2% is a power of two, we can rewrite this as T(1)=co<cn(k+1)=c

T(n)<{ fn=1 because ¢ = max(co, C1)
~12T(n/2)+cin ifn>2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 22125
Merge Sort Analysis Merge Sort Analysis
Termination and Efficiency Termination and Efficiency (General Case)
Inductive hypothesis: Assume k > 0 and theorem holds fork — 1 : Consider the function L(n) = [log, n| forn > 1
Show that the theorem holds for k : Useful Property:
@ L([n/2]) =L(n) —1and L(|n/2]) < L(n) — 1 for every integer
n>2

If n > 1then T(n) < cnL(2n) < cn(log, n + 2).

Method of Proof: induction on n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 23125 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 24125

Merge Sort Analysis

Further Observations

It can be shown (by consideration of particular inputs) that the
worst-case running time of this algorithm is also in Q(nlog, n). Itis
therefore in ©(nlog, n)

@ This is preferable to the classical sorting algorithms, for sufficiently
large inputs, if worst-case running time is critical

@ The classical algorithms are faster on sufficiently small inputs
because they are simpler

Alternative Approach: A “hybrid” algorithm:

@ Use the recursive strategy given above when the input size is
greater than or equal to some (carefully chosen) “threshold” value

@ Switch to a simpler, nonrecursive algorithm (that is faster on small
inputs) as soon as the input size drops to below this “threshold”
value

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 25/25

	Introduction
	Merging
	Description
	Analysis

	Merge Sort
	Description
	Analysis

