
Computer Science 331
Merge Sort

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #23

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 1 / 25

Outline

1 Introduction

2 Merging
Description
Analysis

3 Merge Sort
Description
Analysis

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 2 / 25

Introduction

Introduction

Merge Sort is is an asymptotically faster algorithm than the sorting
algorithms we have seen so far.

It can be used to sort an array of size n using Θ(n log2 n)
operations in the worst case.

Presented here: A version that takes an input array A and produces
another sorted array B (containing the entries of A, rearranged)

A solution to the “Merging Problem” (presented next) is a subroutine
that is used to do much of the work.

Reference: Textbook, Section 10.7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 3 / 25

Merging Description

The “Merging” Problem

Calling Sequence: merge(A1, A2, B)

Precondition:

A1 is a sorted array of length n1 ∈ N, so that

A1[h] ≤ A1[h + 1] for 0 ≤ h ≤ n1 − 2

A2 is a sorted array of length n2 ∈ N, so that

A2[h] ≤ A2[h + 1] for 0 ≤ h ≤ n2 − 2

Entries of A1 and A2 are objects of the same ordered type

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 4 / 25



Merging Description

The “Merging” Problem (cont.)

Postcondition:

B is a sorted array of length n1 + n2, so that

B[h] ≤ B[h + 1] for 0 ≤ h ≤ n1 + n2 − 2

Entries of B are the entries of A1 together with the entries of A2,
reordered but otherwise unchanged

A1 and A2 have not been modified

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 5 / 25

Merging Description

Idea for an Algorithm

Maintain indices into each array (each initially pointing to the leftmost
element)

repeat

Compare the current elements of each array

Append the smaller entry onto the “end” of B, advancing the index
for the array from which this entry was taken

until one of the input arrays has been exhausted

Append the rest of the other input array onto the end of B

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 6 / 25

Merging Description

Pseudocode

merge (A1, A2, B)
n1 = length(A1); n2 = length(A2)
Declare B to be an array of length n1 + n2

i1 = 0; i2 = 0; j = 0
while (i1 < n1) and (i2 < n2) do

if A1[i1] ≤ A2[i2] then
B[j] = A1[i1]; i1 = i1 + 1

else
B[j] = A2[i2]; i2 = i2 + 1

end if
j = j + 1

end while

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 7 / 25

Merging Description

Pseudocode, Continued

{Copy remainder of A1 (if any)}
while i1 < n1 do

B[j] = A1[i1]; i1 = i1 + 1; j = j + 1
end while

{Otherwise copy remainder of A2}
while i2 < n2 do

B[j] = A2[i2]; i2 = i2 + 1; j = j + 1
end while

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 8 / 25



Merging Description

Example

A1 : 1 3 5 6 8 A2 : 4 5 7 9 10

j = 0, i1 = 0, i2 = 0

B:

j = 1, i1 = , i2 =

B:

j = 2, i1 = , i2 =

B:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 9 / 25

Merging Description

Example (cont.)

j = 3, i1 = , i2 = B:

j = 4, i1 = , i2 = B:

j = 5, i1 = , i2 = B:

j = 6, i1 = , i2 = B:

j = 7, i1 = , i2 = B:

j = 8, i1 = , i2 =

Final result: B:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 10 / 25

Merging Analysis

Loop Invariant for Loop #1

After the k th execution of the body of the first loop

n1 = length(A1) ∈ N; n2 = length(A2) ∈ N; i1, i2, j ∈ N;

0 ≤ i1 ≤ n1 and 0 ≤ i2 ≤ n2;

j = k = i1 + i2;

B[h] ≤ B[h + 1] for 0 ≤ h ≤ j − 2;

B[0], B[1], . . . , B[j − 1] are the values

A1[0], A1[1], . . . , A1[i1 − 1] and A2[0], A2[1], . . . , A2[i2 − 1],

reordered but otherwise unchanged;

if j ≥ 1 and i1 < n1 then B[j − 1] ≤ A1[i1]

if j ≥ 1 and i2 < n2 then B[j − 1] ≤ A2[i2]

The arrays A1 and A2 have not been changed.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 11 / 25

Merging Analysis

Analysis for Loop #1, Concluded

Loop Variant for Loop #1: f (n1, n2, j) = n1 + n2 − j

loop invariant implies that j = i1 + i2, so that

f (n1, n2, j) = (n1 − i1) + (n2 − i2)

it follows, since i1 ≤ n1 and i2 ≤ n2, that i1 = n1 and i2 = n2 if
f (n1, n2, j) ≤ 0

Initial value of j = 0, so worst-case # of iterations is ≤ n1 + n2

Application of Loop Invariant and Loop Variant: failure of the loop
test, and the loop invariant, implies that either i1 = n1 or i2 = n2 on
termination of the first loop. Conclusion:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 12 / 25



Merging Analysis

Analysis for Loop #2

Loop Invariant for Loop #2:
Same as the loop invariant for loop #1, along with the additional
condition

either i1 = n1 or i2 = n2

Loop Variant for Loop #2: Same as for loop #1.

Conclusions:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 13 / 25

Merging Analysis

Analysis for Loop #3

Loop Invariant for Loop #3:
Same as the loop invariant for loop #1, along with the additional
condition

i1 = n1

Loop Variant for Loop #3: Same as for loop #1.

Conclusions:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 14 / 25

Merging Analysis

Analysis of the Merging Algorithm

Correctness:

loop invariants prove partial correctness (if merge terminates, the
output is correct)

loop variant implies that the for loops (and hence the entire
algorithm) terminate

therefore, merge is correct

Efficiency:

Each of the three loops executes no more than n1 + n2 times

each loop body requires a constant number of steps

total cost of merge is Θ(n1 + n2)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 15 / 25

Merge Sort Description

Merge Sort: Idea for an Algorithm

Suppose we:
1 Split an input array into two roughly equally-sized pieces.
2 Recursively sort each piece.
3 Merge the two sorted pieces.

This sorts the originally given array.

Note: this algorithm design strategy is known as divide-and-conquer:

divide the original problem (sorting an array) into smaller
subproblems (sorting smaller arrays)

solve the smaller subproblems recursively

combine the solutions to the smaller subproblems (the sorted
subarrays) to obtain a solution to the original problem (merging
the sorted arrays)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 16 / 25



Merge Sort Description

Pseudocode

Merge Sort (A, B)
n = length(A) {Assumption: n ≥ 1}
if n == 1 then

B[0] = A[0] {B created with length 1}
else

n1 = dn/2e
n2 = n − n1 {so that n2 = bn/2c}
Set A1 to be A[0], . . . , A[n1 − 1] (length n1)
Set A2 to be A[n1], . . . , A[n − 1] (length n2)
mergeSort (A1, B1)
mergeSort (A2, B2)
merge (B1, B2, B)

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 17 / 25

Merge Sort Description

Example

0 1 2 3 4 5 6 7
A : 7 3 9 6 5 2 1 8

1 Sort A[0, . . . , 3] = [7, 3, 9, 6] recursively:

2 Sort A[4, . . . , 7] = [5, 2, 1, 8] recursively.
3 Merge: result is [1, 2, 3, 5, 6, 7, 8, 9]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 18 / 25

Merge Sort Analysis

Partial Correctness

Theorem 1
If mergeSort is run on an input array A of size n, then either

the algorithm eventually halts, producing the desired sorted
array B as output,

or

the algorithm does not halt at all.

Prove by induction on n

prove partial correctness for n = 1

prove partial correctness for n > 1 assuming partial correctness
for arrays of size k for k < n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 19 / 25

Merge Sort Analysis

Proof of Partial Correctness

Base Case: n = 1

if n = 1, array consists of one element (array is sorted trivially)

algorithm returns B containing a copy of the single element in the
array (terminates with correct output)

Inductive hypothesis:

assume the algorithm is partially correct for arrays of size k < n

Prove that B is sorted under this assumption:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 20 / 25



Merge Sort Analysis

Termination and Efficiency

Let T (n) be the number of steps used by this algorithm when given an
input array of length n, in the worst case.

We can see the following by inspection of the code:

T (n) ≤

{
c0 if n = 1

T (dn/2e) + T (bn/2c) + c1n if n ≥ 2

for some constants c0 and c1.

Special Case: If n = 2k is a power of two, we can rewrite this as

T (n) ≤

{
c0 if n = 1

2T (n/2) + c1n if n ≥ 2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 21 / 25

Merge Sort Analysis

Termination and Efficiency

Theorem 2

If n = 2k is a power of two, and c = max(c0, c1), then

T (n) ≤ cn log2(2n) = cn(k + 1).

Prove by induction on k

Base case (k = 0): for k = 0 we have n = 20 = 1, and

T (1) = c0 ≤ cn(k + 1) = c

because c = max(c0, c1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 22 / 25

Merge Sort Analysis

Termination and Efficiency

Inductive hypothesis: Assume k > 0 and theorem holds for k − 1 :

Show that the theorem holds for k :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 23 / 25

Merge Sort Analysis

Termination and Efficiency (General Case)

Consider the function L(n) = dlog2 ne for n ≥ 1

Useful Property:

L(dn/2e) = L(n)− 1 and L(bn/2c) ≤ L(n)− 1 for every integer
n ≥ 2

Theorem 3
If n ≥ 1 then T (n) ≤ cnL(2n) ≤ cn(log2 n + 2).

Method of Proof: induction on n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 24 / 25



Merge Sort Analysis

Further Observations

It can be shown (by consideration of particular inputs) that the
worst-case running time of this algorithm is also in Ω(n log2 n). It is
therefore in Θ(n log2 n)

This is preferable to the classical sorting algorithms, for sufficiently
large inputs, if worst-case running time is critical

The classical algorithms are faster on sufficiently small inputs
because they are simpler

Alternative Approach: A “hybrid” algorithm:

Use the recursive strategy given above when the input size is
greater than or equal to some (carefully chosen) “threshold” value

Switch to a simpler, nonrecursive algorithm (that is faster on small
inputs) as soon as the input size drops to below this “threshold”
value

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #23 25 / 25


	Introduction
	Merging
	Description
	Analysis

	Merge Sort
	Description
	Analysis


