

Mike Jacobson

Department of Computer Science
University of Calgary
Lecture \#22

Outline
(1) Introduction
(2) Selection Sort

- Description
- Analysis
(3) Insertion Sort
- Description
- Analysis

4. Bubble Sort

- Description
- Analysis
(5) Comparisons

Three Classical Algorithms

Discussed today: three "classical" sorting algorithms

- Reasonably simple
- Work well on small arrays
- Each can be used to sort an array of size n using $\Theta\left(n^{2}\right)$ operations (comparisons and exchanges of elements) in the worst case
- None is a very good choice to sort large arrays: Asymptotically faster algorithms exist!

Reference: Textbook, Section 10.1-10.5

- Section 10.1 - using Java's sorting functions
- Section 10.5 - comparison of classical sorting algorithms

Idea:

- Repeatedly find " i th -smallest" element and exchange it with the element in location $A[i]$
- Result: After $i^{\text {th }}$ exchange,

$$
A[0], A[1], \ldots, A[i-1]
$$

are the i smallest elements in the entire array, in sorted order
Reference: Textbook, Section 10.2

Selection Sort

for i from 0 to $n-2$ do
$\min =i$
for j from $i+1$ to $n-1$ do
if $A[j]<A[\mathrm{~min}]$ then $\min =j$
end if
end for
$\operatorname{tmp}=A[i] ; A[i]=A[$ min $] ; A[\min]=\operatorname{tmp}\{$ Swap $\}$
end for
Example
Example (cont.) Selecion Sort

A: | 2 | 6 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |

Idea: find smallest element in $A[i], \ldots, A[4]$ for each i from 0 to $n-1$
$i=0$

- set $\min =3(A[3]=1$ is minimum of $A[0], \ldots, A[4])$
- swap $A[0]$ and $A[3]$ (A[0] sorted)

A: | 1 | 6 | 3 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$i=1$

- set $\min =3(A[3]=2$ is minimum of $A[1], \ldots, A[4])$
- swap $A[1]$ and $A[3](A[0], A[1]$ sorted)

A: | 1 | 2 | 3 | 6 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$$
i=2
$$

- set $\min =2(A[2]=3$ is minimum of $A[2], \ldots, A[4])$
- swap $A[2]$ and $A[2](A[0], A[1], A[2]$ sorted)

A: | 1 | 6 | 3 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$i=3$

- set $\min =4(A[4]=4$ is minimum of $A[3], A[4])$
- swap $A[3]$ and $A[4](A[0], A[1], A[2], A[3]$ sorted)

A: | 1 | 2 | 3 | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- |

Finished! $A[0], \ldots, A[4]$ sorted

The inner loop is a for loop, which does the same thing as the following code (which includes a while loop):

```
j=i+1
while j\leqn-1 do
    if (A[j]<A[min]) then
        min = j
    end if
    j=j+1
end while
```

We will supply a "loop invariant" and "loop variant" for the above while loop in order to analyze the behaviour of the for loop we used to generate it

After k executions of the loop body, the following hold:

- $A[0], \ldots, A[i-1]$ are sorted
- $A[\ell] \geq A[i-1]$ for $i \leq \ell<n$
- $i \leq \min <j$ and $A[\min] \leq A[h]$ for $i \leq h<j$
- entries of A have been reordered, otherwise unchanged
\qquad

Loop Invariant: After k executions of the inner loop body,

- $n, i, \min \in \mathbb{N} ; n$ is the size of A
- First subarray (with size i) is sorted with smallest elements:
- $0 \leq i \leq n-2$
- $A[h] \leq A[h+1]$ for $0 \leq h \leq i-2$
- if $i>0$ then $A[i-1] \leq A[h]$ for $i \leq h \leq n-1$
- Searching for the next-smallest element:
- $i+1 \leq j \leq n$ and $j=i+1+k$
- $i \leq \min <j$
- $A[\min] \leq A[h]$ for $i \leq h<j$
- Entries of A have been reordered; otherwise unchanged

Loop invariant and failure of the loop test ensures that $j=n$ immediately after the final execution of the inner loop body

- This, and the loop invariant, ensures that $i \leq \min <n$ and that $A[\min] \leq A[\ell]$ for all ℓ such that $i \leq \ell<n$

The loop invariant also ensures that $A[\min] \geq A[h]$ for all h such that $0 \leq h<i$

In other words, $A[\mathrm{~min}]$ is the value that should be moved into position $A[i]$

Loop Variant: $f(n, i, j)=n-j$

- decreasing integer function
- when $f(n, i, j)=0$ we have $j=n$ and the loop terminates

Application:

- initial value is $j=i+1$
- worst-case number of iterations is
$f(n, i, i+1)=n-(i+1)=n-1-i$

The outer loop is a for loop whose index variable i has values from 0 to $n-2$, inclusive

This does the same thing as a sequence of statements including - an initialization statement, $i=0$

- a while loop with test " $i \leq n-2$ " whose body consists of the body of the for loop, together with a final statement $i=i+1$

We will provide a loop invariant and a loop variant for this while loop in order to analyze the given for loop

Selection Sort Analysis
 Outer Loop: Loop Invariant and Loop Variant

Analysis of Selection Sort

Loop Invariant: After k executions of the outer loop body,

- $0 \leq i \leq n-1$ and $i=k$
- $A[h] \leq A[h+1]$ for $0 \leq h<i$
- if $k>0, A[i-1] \leq A[h]$ for $i \leq h<n$
- Entries of A have been reordered; otherwise unchanged

Thus: $A[0], \ldots, A[i-1]$ are sorted and are the i smallest elements in A
Loop Variant: $f(n, i)=n-1-i$

- decreasing integer function
- when $f(n, i)=0$ we have $i=n-1$ and the loop terminates
- worst-case number of iterations is $f(n, 0)=n-1$

Worst-case: $\Theta\left(n^{2}\right)$ steps

- inner loop iterates $n-1-i$ times (constant steps per iteration)
- outer loop iterates $n-1$ times
- total number of steps is at most

$$
c_{0}+\sum_{i=0}^{n-2} c_{1}(n-1-i)=c_{0}+c_{1}(n-1)^{2}-c_{1} \sum_{i=0}^{n-2} i \in \Theta\left(n^{2}\right)
$$

Conclusion: Worst-case running time is in $O\left(n^{2}\right)$.

Idea:

- Sort progressively larger subarrays
- $n-1$ stages, for $i=1,2, \ldots, n-1$
- At the end of the $i^{\text {th }}$ stage
- Entries originally in locations

$$
A[0], A[1], \ldots, A[i]
$$

have been reordered and are now sorted

- Entries in locations

$$
A[i+1], A[i+2], \ldots, A[n-1]
$$

have not yet been examined or moved Reference: Textbook, Section 10.4
Pseudocode \quad Insertion Sort Description

```
Insertion Sort
    for i from 1 to n-1 do
        j=i
        while ((j>0) and (A[j]<A[j-1])) do
            tmp =A[j];A[j]=A[j-1];A[j-1]=tmp {Swap}
            j=j-1
        end while
    end for
```

Insertion Sort Description

Example

A: | 2 | 6 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |

Idea: insert $A[i]$ in the correct position in $A[0], \ldots, A[i-1]$

- initially, $i=0$ and $A[0]=2$ is sorted
$i=1$
- no swaps
- $A[0], A[1]$ sorted

A: | 2 | 6 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$i=2$

- swap $A[2]$ \& $A[1]$
- $A[0], A[1], A[2]$ sorted

$\mathrm{A}:$| 2 | 3 | 6 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$$
i=3
$$

- swap $A[3]$ \& $A[2], \operatorname{swap} A[2]$ \& $A[1], \operatorname{swap} A[1] \& A[0]$
- $A[0], A[1], A[2], A[3]$ sorted

$\mathrm{A}:$| 1 | 2 | 3 | 6 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$i=4$

- swap $A[4]$ \& $A[3]$
- $A[0], A[1], A[2], A[3], A[4]$ sorted

A: \square
Finished! $A[0], \ldots, A[4]$ sorted

A:

After k executions of the loop body, the following hold:

- $A[0], \ldots, A[j-1]$ are sorted
- $A[j], \ldots, A[i]$ are sorted
- $A[j-1] \leq A[j+1]$, so that $A[0], \ldots, A[i]$ are sorted if $A[j-1] \leq A[j]$

Consider some execution of the outer loop body, and the use of the inner loop as part of it.

Loop Invariant: After k executions of the inner loop body,

- $i, j, n \in \mathbb{N} ; n$ is the size of A
- $1 \leq i<n$ and $0 \leq j \leq i$
- $j=i-k$
- $A[h] \leq A[h+1]$ for $0 \leq h \leq j-2$ and for $j \leq h<i$
- if $j>0$ and $j<i$ then $A[j-1] \leq A[j+1]$
- Entries of A have been reordered; otherwise unchanged

Once again, the outer for loop can be rewritten as a while loop for analysis. Since the inner loop is already a while loop, the new outer while loop would be as follows.

```
\(i=1\)
while \(i \leq n-1\) do
        \(j=i\)
        Inner loop of original program
        \(i=i+1\)
end while
```

This program will be analyzed in order establish the correctness and efficiency of the original one.

Worst-case: $\Theta\left(n^{2}\right)$ steps

- inner loop iterates i times (constant steps per iteration)
- outer loop iterates $n-1$ times
- total number of steps is

$$
c_{0}+\sum_{i=1}^{n-1} c_{1} i=c_{0}+c_{1} \frac{(n-1)(n-2)}{2} \in \Theta\left(n^{2}\right)
$$

Conclusion: Worst-case running time is in $O\left(n^{2}\right)$.

Loop Invariant: After k executions of the outer loop body,

- $1 \leq i \leq n$ and $i=k+1$
- $A[h] \leq A[h+1]$ for $0 \leq h<i-2$
- Entries of A have been reordered; otherwise unchanged.

Thus, $A[0], \ldots, A[i-1]$ are sorted, for $i=k+1$, after k iterations.

- after $n-1$ iterations, A is sorted

Loop Variant: $f(n, i)=n-i$

- number of iterations is $f(n, 1)=n-1$

Analysis of Insertion Sort, Concluded

Worst-Case, Continued: For every integer $n \geq 1$ consider the operation on this algorithm on an input array A such that

- the length of A is n
- the entries of A are distinct
- A is sorted in decreasing order, instead of increasing order

It is possible to show that the algorithm uses $\Omega\left(n^{2}\right)$ steps on this input array.

Conclusion: The worst-case running time is in $\Theta\left(n^{2}\right)$.

Best-Case: $\Theta(n)$ steps are used in the best case.

- Proof: Exercise. Consider an array whose entries are already sorted as part of this.

Idea:

- Similar, in some ways, to "Selection Sort"
- Repeatedly sweep from right to left over the unsorted (rightmost) portion of the array, keeping the smallest element found and moving it to the left
- Result: After the $i^{\text {th }}$ stage,

$$
A[0], A[1], \ldots, A[i-1]
$$

are the i smallest elements in the entire array, in sorted order

Reference: Textbook, Section 10.3 (variation of this idea)

Exercise!

- Rewrite the inner loop as an equivalent while loop (preceded by an initialization statement)
- Try to use your understanding of what the inner loop does to find a "loop invariant."
- This should include enough information so that it can be proved to hold (probably using mathematical induction) and so that it can be used to establish correctness of the outer loop.
- Try to find a "loop variant" for the inner loop as well.

```
```

Bubble Sort

```
```

Bubble Sort
for i from 0 to n-2 do
for i from 0 to n-2 do
for j from n-2 down to i do
for j from n-2 down to i do
if A[j]>A[j+1] then
if A[j]>A[j+1] then
tmp =A[j];A[j]=A[j+1];A[j+1]=tmp {Swap}
tmp =A[j];A[j]=A[j+1];A[j+1]=tmp {Swap}
end if
end if
end for
end for
end for

```
```

 end for
    ```
```

Bubble Sort Analysis

Bubble Sort Analysis
Analysis of Outer Loop

Begin, as usual, by rewriting this loop as an equivalent while loop (preceded by an initialization statement)

- The loop invariant and loop variant given for the outer loop of the "Selection Sort" algorithm can be used here, as well.
- Proving this is different, since the details of the inner loops of these two algorithms are quite different.

The application of the loop invariant and loop variant to establish correctness are then much the same as for the "Selection Sort" algorithm.

Comparisons

All three algorithms have worst-case complexity $\Theta\left(n^{2}\right)$

- Selection sort only swaps $O(n)$ elements, even in the worst case. This is an advantage when exchanges are more expensive than comparisons.
- On the other hand, Insertion sort has the best "best case" complexity. It also performs well if the input as already partly sorted.
- Bubble sort is generally not used in practice.

Note: Asymptotically faster algorithms exist and will be presented next. These "asymptotically faster" algorithms are better choices when the input size is large and worst-case performance is critical.

