
Computer Science 331
Algorithms for Searching

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #21

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 1 / 23

Outline

1 The “Searching” Problem

2 Unsorted Arrays
Linear Search

3 Sorted Arrays
Linear Search
Binary Search

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 2 / 23

The “Searching” Problem

The “Searching” Problem

Precondition:

A: Array of length n, for some integer n ≥ 1, storing objects of
some type

k : An object of the type that might be found in A

Postcondition:

i : An integer such that 0 ≤ i < n and A[i] = k
(The array A and key k were not changed.)

Exceptions:

KeyNotFoundException: Thrown if k is not found in A

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 3 / 23

Unsorted Arrays Linear Search

Linear Search

Idea: Compare A[0], A[1], A[2], . . . to k until either

k is found, or

we run out of entries to check

LinearSearch (k )
i = 0
while (i < n) and (A[i] 6= k) do

i = i + 1
end while

if i < n then
return i

else
Throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 4 / 23



Unsorted Arrays Linear Search

Example

0 1 2 3 4 5 6 7 8 9 10
A: 43 30 6 18 -3 49 2 21 29 35 23

Search for 18 in the array A :

i = 0 : A[0] = 43 6= 18

i = 1 : A[1] = 30 6= 18

i = 2 : A[2] = 6 6= 18

i = 3 : A[3] = 18

Return 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 5 / 23

Unsorted Arrays Linear Search

Partial Correctness

Loop Invariant: If the loop body is exectuted j or more times, then
after j executions of the loop body

i = j

0 ≤ i ≤ n

A[h] 6= k for 0 ≤ h < i

Proving the Loop Invariant: use induction on j

Base Case (j = 0):

before first execution of loop body we have i = 0

loop invariant holds (conditions on i , no values of h such that
0 ≤ h < 0)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 6 / 23

Unsorted Arrays Linear Search

Partial Correctness (cont.)

Inductive hypothesis: assume that, if the loop iterates j times, then the
loop invariant holds for iold = j

Need to show that if the loop iterates a j + 1st time, then the loop
invariant holds for inew = j + 1 :

if true for iteration iold = j , then A[h] 6= k for 0 ≤ h < iold

if loop iterates, then A[iold ] 6= k and inew = iold + 1
thus A[h] 6= k for 0 ≤ h < inew

because the loop iterated for iold = j , we have iold < n and inew ≤ n.

Thus, the loop invariant holds for j + 1.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 7 / 23

Unsorted Arrays Linear Search

Partial Correctness (applying the loop invariant)

When the loop test fails, the loop invariant holds and either i ≥ n or
A[i] = k

Case 1 (i ≥ n): loop invariant implies that A[h] 6= k for 0 ≤ h < n,
so k is not in A and KeyNotFoundException is thrown

Case 2 (i < n): loop invariant implies that A[i] = k and i is
returned

Conclusion:

postcondition is satisfied in either case, so linearSearch is
paritally correct

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 8 / 23



Unsorted Arrays Linear Search

Termination and Efficiency

Loop Variant: f (n, i) = n − i

Proving the Loop Variant:

f (n, i) is a decreasing integer function because integer i increases
after each loop body execution

f (n, i) = 0 when i = n, loop terminates (worst case) when i ≥ n

Application of Loop Variant:

existence demonstrates termination

worst-case number of iterations is f (n, 0) = n

loop body runs in constant time, so worst-case runtime of
LinearSearch is Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 9 / 23

Sorted Arrays Linear Search

New Problem: Searching in a Sorted Array

Precondition:

A: Array of length n, for some integer n ≥ 1, storing objects of
some ordered type
New Requirement: A[i] ≤ A[i + 1] for 0 ≤ i < n − 1

k : An object of the type that might be found in A

Postcondition:

i : An integer such that 0 ≤ i < n and A[i] = k
(The array A and key k were not changed.)

Exceptions:

KeyNotFoundException: Thrown if k is not found in A

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 10 / 23

Sorted Arrays Linear Search

Linear Search

Idea: compare A[0], A[1], A[2], . . . to k until either k is found or

we see a value larger than k — all future values will be larger
than k as well! — or

we run out of entries to check

LinearSearch (k )
i = 0
while (i < n) and (A[i] < k) do

i = i + 1
end while

if (i < n) and (A[i] == k) then
return i

else
Throw KeyNotFoundException

end if
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 11 / 23

Sorted Arrays Linear Search

Example

0 1 2 3 4 5 6 7 8 9 10
A: -3 2 6 18 21 23 29 30 35 43 49

Search for 17 in the array A :

i = 0 : A[0] = −3 < 17

i = 1 : A[1] = 2 < 17

i = 2 : A[2] = 6 < 17

i = 3 : A[3] = 18 ≥ 17

Throw KeyNotFoundException

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 12 / 23



Sorted Arrays Linear Search

Partial Correctness

Loop Invariant: If the loop body is exectuted j or more times, then
after j executions of the loop body

i = j

0 ≤ i ≤ n

A[h] < k for 0 ≤ h < i

Proving the Loop Invariant: use induction on j

Base Case (j = 0):

before first execution of loop body we have i = 0

loop invariant holds (conditions on i , no values of h such that
0 ≤ h < 0)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 13 / 23

Sorted Arrays Linear Search

Partial Correctness (cont.)

Inductive hypothesis: assume that, if the loop iterates j times, then the
loop invariant holds for iold = j

Need to show that if the loop iterates a j + 1st time, then the loop
invariant holds for inew = j + 1 :

if true for iteration iold = j , then A[h] < k for 0 ≤ h < iold

if loop iterates without terminating, A[iold ] < k and inew = iold + 1
thus A[h] < k for 0 ≤ h < inew

because the loop iterated for iold = j , we have iold < n and inew ≤ n.

Thus, the loop invariant holds for j + 1.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 14 / 23

Sorted Arrays Linear Search

Partial Correctness (applying the loop invariant)

When the loop test fails, the loop invariant holds and either i ≥ n or
A[i] ≥ k

Case 1 (i ≥ n): loop invariant implies that A[h] < k for 0 ≤ h < n,
so k is not in A and KeyNotFoundException is thrown

Case 2 (i < n and A[i] = k ): key is found and i is returned

Case 3 (i < n and A[i] > k ): loop invariant implies that A[i] < k for
0 ≤ h < i , so k is not in A and KeyNotFoundException is thrown

Conclusion:

postcondition is satisfied in all cases, so linearSearch is paritally
correct

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 15 / 23

Sorted Arrays Linear Search

Termination and Efficiency

Loop Variant: f (n, i) = n − i

Proving the Loop Variant:

same as before

Application of Loop Variant:

same as before (worst-case runtime is alsoΘ(n))

Note: although the worst-case involves examining all elements of the
array, fewer will be examined on average

improves on unsorted case (all array elements must be examined
to determine that k is not in the array)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 16 / 23



Sorted Arrays Binary Search

Binary Search

Idea: suppose we compare k to A[i]

if k > A[i] then k > A[h] for all h ≤ i .

if k < A[i] then k < A[h] for all h ≥ i .

Thus, comparing k to the middle of the array tells us a lot:

can eliminate half of the array after the comparison

binarySearch (k )
return bsearch(0, n − 1, k )

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 17 / 23

Sorted Arrays Binary Search

Specification of Requirements for Subroutine

Calling Sequence: bsearch(low, high, k )

Precondition:

A, k : Same for for “Searching in a Sorted Array”

low, high: Integers such that

0 ≤ low ≤ n and −1 ≤ high ≤ n − 1

low ≤ high + 1

A[h] < k for 0 ≤ h < low

A[h] > k for high < h ≤ n − 1

Postcondition and Exceptions:

Same as for “Searching in a Sorted Array”

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 18 / 23

Sorted Arrays Binary Search

Pseudocode: The Binary Search Subroutine

bsearch (low , high, k )
if low > high then

Throw KeyNotFoundException
else

mid = b(low + high)/2c
if (A[mid ] > k) then

return bsearch(low , mid − 1, k )
else if (A[mid ] < k) then

return bsearch(mid + 1, high, k )
else

return mid
end if

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 19 / 23

Sorted Arrays Binary Search

Example

0 1 2 3 4 5 6 7 8 9 10
A: -3 2 6 18 21 23 29 30 35 43 49

Search for 18 in the array A :

bsearch (0,10,18): mid = (0 + 10)/2 = 5, A[5] = 23 > 18

bsearch (0,4,18): mid = (0 + 4)/2 = 2, A[2] = 6 < 18

bsearch (3,4,18): mid = (3 + 4)/2 = 3, A[3] = 18

Return 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 20 / 23



Sorted Arrays Binary Search

Partial Correctness

Assumptions

bsearch is called with the precondition satisfied

Calls to bsearch within the code behave as expected

Case: low > high

base case (no elements) — throw KeyNotFoundException
(correct)

Case: low = high

return mid(= low = high) if A[mid ] = k (correct)

otherwise recursive call with low > high (correct)

Case: low < high

return mid if A[mid ] = k (correct)

recursive call (correct by assumption)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 21 / 23

Sorted Arrays Binary Search

Efficiency

Case: low ≥ high

Θ(1) steps

Case: low < high : Consider i = dlog2(high − low + 1)e
Result of Function Call:

i decreases by 1 (because new high − low + 1 is less than half the
old value)

What Happens if i = 0 :

high = low (algorithm terminates after at most one more iteration)

Initial Value:
i = log2 n, because low = 0 and high = n − 1 initially

Conclusion:
worst-case run time is Θ(log2 n) (constant number of steps per
iteration)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 22 / 23

Sorted Arrays Binary Search

References

Java.utils.Arrays package contains several implementations of
binary search

arrays with Object or generic entries, or entries of any basic type

slightly different pre and postconditions than presented here

Textbook:

Section 7.1: design of recursive algorithms

Section 7.3: discussion of recursive array search algorithms
(linear and binary), Java implementation

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 23 / 23


	The ``Searching'' Problem
	Unsorted Arrays
	Linear Search

	Sorted Arrays
	Linear Search
	Binary Search


