
Computer Science 331
Hash Functions

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #20

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 1 / 22

Outline

1 Hash Functions
Definition
Desirable Property: Easily Computed
Desirable Property: Scattering of Data

2 Two Kinds
Interpreting Keys as Natural Numbers
The Division Method
The Multiplication Method

3 Universal Hashing

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 2 / 22

Hash Functions Definition

What is a Hash Function?

A hash function is a function

h : U → {0, 1, . . . , m − 1}

where U and m are as follows.

U: The “universe” of possible keys
(generally finite, but extremely large)

m: The size of the hash table T

This kind of hash function is useful for

hash tables with chaining

use as h0(k) = h(k , 0) for hashing with open addressing (using
linear or quadratic probing, or double hashing)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 3 / 22

Hash Functions Desirable Property: Easily Computed

Desirable Properties of Hash Functions

A hash function should be

well-defined

easy to compute

Explanation:

If the hash function is not well-defined, so that there is no (single)
value for h(k) for some key k , then h cannot be used to place k
within the hash table.

If the hash function is difficult or expensive to compute, then
operations on the hash table might be too expensive for this data
structure to be useful.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 4 / 22

Hash Functions Desirable Property: Scattering of Data

Desirable Properties of Hash Functions

A hash function should distribute keys evenly throughout the hash
table.

One Part of This Requirement: For 0 ≤ i < m, let

Ui = {k ∈ U | h(k) = i} .

In order to ensure that random data is evenly distributed, the size of
each set Ui should be as close as possible to |U|/m — that is,

either |Ui | =
⌊
|U|
m

⌋
or |Ui | =

⌈
|U|
m

⌉
for each i .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 5 / 22

Hash Functions Desirable Property: Scattering of Data

A Poor Choice

Example of a Function That Fails This Test: Suppose

U = {0, 1, . . . , 109 − 1},

so that keys are nine-digit nonnegative integers, and that

m = 40 .

Claim:
The function

h(x) = (first two digits of x) mod 40

does not satisfy the previous condition.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 6 / 22

Hash Functions Desirable Property: Scattering of Data

Proof of the Claim

Proof.

|U|/m : = 109/40 = 25000000

U19 : all integers between 0 and 109 − 1 that start with 19, 59, or 99

|U19| = 3(1 + 10 + 100 + 1000 + · · ·+ 107) = 33333333

U20 : all integers between 0 and 109 − 1 that start with 20 or 60

|U20| = 2(1 + 10 + 100 + 1000 + · · ·+ 107) = 22222222

Consequence: the hash function does not distribute keys evenly
throughout the hash table

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 7 / 22

Hash Functions Desirable Property: Scattering of Data

Desirable Properties of Hash Functions

A hash function should distribute keys evenly throughout the hash
table.

Another Part of This Requirement:

As much as possible, non-random data should be evenly
distributed throughout the table as well.

Unfortunately this requirement cannot be completely or perfectly
satisfied!

However, hash functions that fail to distribute evenly certain common
kinds of non-random data should also be avoided.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 8 / 22

Hash Functions Desirable Property: Scattering of Data

Example: Spacial Locality

Spatial Locality: frequently-used resources are often clustered close
together.

Examples:

The first two digits of student IDs at the University of Calgary were
once the same as the last two digits of the first year of the
student’s program

Early digits of an employee’s ID number might indicate the
department in which the employee works, or (for a large company)
the employee’s geographical location

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 9 / 22

Hash Functions Desirable Property: Scattering of Data

A Poor Choice

In the above examples, a hash function like the previous example

h(x) = (first two digits of x) mod 40

would be a terrible choice!

Example: Consider the hash table shape if this was used when keys
were the ID numbers for (older) students at U of C!

Conclusion: A function is generally a poor choice for a hash function if
it maps many keys that are close together to the same location.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 10 / 22

Hash Functions Desirable Property: Scattering of Data

Principles

The following principles should be followed in order to avoid some of
the problems already mentioned.

1 Calculation of the hash function should involve the entire search
key — not just a part of it.

2 If a hash function uses modular arithmetic then the base should
be prime, that is, if h has the form

h(x) = x mod m

then m should be a prime number.

Note: The examples from the previous lecture did not follow these
principles — they were designed to be easy to understand rather than
to be useful in practice!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 11 / 22

Two Kinds Interpreting Keys as Natural Numbers

Interpreting Keys as Natural Numbers

Common Situation: The key is a character string over some
alphabet Σ (eg. the ASCII character set)

Useful First Step: Map each string α to a natural number by

mapping each symbol in the alphabet to a value between 0
and B − 1, where B = |Σ|
using this mapping to map each of the symbols in α to an integer
between 0 and B − 1, in order to form a base-B (or “radix-B”)
integer

Example: for ASCII character strings we have B = 128 (each ASCII
character maps to an integer between 0 and 127)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 12 / 22

Two Kinds Interpreting Keys as Natural Numbers

Example

Consider the string “rabbit” — using www.lookuptables.com we obtain:

r a b b i t
114 97 98 98 105 116

We would then map the string “rabbit” to the natural number

114× 1285 + 97× 1284 + 98× 1283 + 98× 1282 + 105× 128 + 116.

Written in standard form (as a decimal integer), this is

3943255553268

The value h(rabbit) will be ĥ(3943255553268), for a function

ĥ : N → {0, 1, . . . , m − 1}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 13 / 22

Two Kinds The Division Method

The Division Method

Assumption from now on: k is an integer (eg: 3943255553268).

Division Method: Choose

h(k) = k mod m

where m is the hash table size.

Poor Choices for m: m should not have (lots of) small factors.

In particular, m should certainly not be a power of either two or ten
— or close to any such powers!

Good Choice: Choose m to be a prime number (but not close to 2`

or 10` for any integer `).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 14 / 22

Two Kinds The Division Method

Implementation Issue

Implementation Issue: Avoiding overflow when applying a hash
function to a character string

Example: Suppose we wish to use the division method, when m = 37
and our search keys are character strings (using the ASCII character
set).

We would like to be able to decide that “rabbit” should be hashed
to

3943255553268 mod 37 = 24

without having to compute the extremely large integer,

3943255553268

along the way!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 15 / 22

Two Kinds The Division Method

Implementation Issue

Useful Properties:

Horner’s Rule: For natural numbers an, an−1, . . . , a0, evaluate
an · Bn + an−1 · Bn−1 + · · ·+ a0 using the formula

(· · · ((an · B + an−1) · B + an−2) · B + · · ·+ a0)

For integers x and y ,

(x + y) mod m = ((x mod m) + (y mod m)) mod m

For integers a and x ,

(a · x) mod m = ((a mod m) · (x mod m)) mod m

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 16 / 22

www.lookuptables.com

Two Kinds The Division Method

Implementation Issue (cont.)

Application: If the symbols in a character string α are mapped to the
numbers an, an−1, . . . , a0 (from right to left), then h(α) can be
computed as follows:

c = an mod m
i = n
while (i > 0) do

i = i − 1
c = (((c · (B mod m)) mod m) + (ai mod m)) mod m

end while
return c

Note: If m is not too large and B < m, the complicated expression can
be simplified (by removing some of the middle divisions with remainder
by m) without causing overflow.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 17 / 22

Two Kinds The Multiplication Method

The Multiplication Method

If k is a natural number, h(k) is a function that depends on a real
number A such that 0 < A < 1 and that is computed as follows.

c = k × A
c = c − bcc
h(k) = bm × cc (an integer between 0 and m − 1)

In the middle step we are computing the “fractional part” of the real
number c. For example, if we generated a real number

27.532986 . . .

after step 1, then we would obtain 0.532986 . . . after step 2.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 18 / 22

Two Kinds The Multiplication Method

Implementation Issue

Difficulty: This involves multiplication by a real number. Computers
cannot generally perform such multiplications exactly.

Solution: Suppose (as usual) that a word of computer memory can be
used to represent an integer between 0 and 2w − 1 for some natural
number w .

Choose A = s/2w for some s ∈ N such that 0 < s < 2w .

Implication: If 0 ≤ k < 2w − 1 then h(k) can be computed
correctly using “double-precision” integer arithmetic.

Exercise: Figure out how to use Horner’s Rule to compute h efficiently
and accurately when keys are character strings!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 19 / 22

Two Kinds The Multiplication Method

Additional Details

Advantage of This Method: The choice of m is less critical.

What is Important, Instead?

Some choices of A work better than others!

Optimal choice depends on characteristics of data being hashed.

Knuth: Choosing

A ≈ (
√

5− 1)/2 = 0.6180339887 . . .

is likely to work well.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 20 / 22

Universal Hashing

Universal Hashing

Universal Hashing:

A method of choosing the hash function in a random way
Works well if

The data to be hashed is “static” (it does not change much, or at all,
over time)
The hash function is chosen independently of the data to be
hashed.

The probability that the randomly chosen hash function works poorly,
on any fixed set of data, is provably small!

See Section 11.3.3 of Introduction to Algorithms for additional details.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 21 / 22

References

References

Frank M. Carrano and Janet J. Prichard
Data Abstraction & Problem Solving with Java:
Walls & Mirrors
Second Edition, Pearson Education, 2006

Donald E. Knuth
The Art of Computer Programming
Volume 3: Sorting and Searching
Addison-Wesley, 1973

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and
Clifford Stein Introduction to Algorithms
Second Edition, McGraw-Hill, 2001

Textbook, Chapter 9.3 and 9.4

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 22 / 22

	Hash Functions
	Definition
	Desirable Property: Easily Computed
	Desirable Property: Scattering of Data

	Two Kinds
	Interpreting Keys as Natural Numbers
	The Division Method
	The Multiplication Method

	Universal Hashing
	References

