Outline

Computer Science 331
 Hash Functions

Mike Jacobson
Department of Computer Science
University of Calgary
Lecture \#20

A hash function is a function

$$
h: U \rightarrow\{0,1, \ldots, m-1\}
$$

where U and m are as follows.
U: The "universe" of possible keys (generally finite, but extremely large)
m : The size of the hash table T

This kind of hash function is useful for

- hash tables with chaining
- use as $h_{0}(k)=h(k, 0)$ for hashing with open addressing (using linear or quadratic probing, or double hashing)
(1) Hash Functions
- Definition
- Desirable Property: Easily Computed
- Desirable Property: Scattering of Data
(2) Two Kinds
- Interpreting Keys as Natural Numbers
- The Division Method
- The Multiplication MethodUniversal HashingReferences

Hash Functions Desirable Property: Easily Computed

Desirable Properties of Hash Functions

A hash function should be

- well-defined
- easy to compute

Explanation:

- If the hash function is not well-defined, so that there is no (single) value for $h(k)$ for some key k, then h cannot be used to place k within the hash table.
- If the hash function is difficult or expensive to compute, then operations on the hash table might be too expensive for this data structure to be useful.

Desirable Properties of Hash Functions

A Poor Choice

A hash function should distribute keys evenly throughout the hash table.

One Part of This Requirement: For $0 \leq i<m$, let

$$
U_{i}=\{k \in U \mid h(k)=i\}
$$

In order to ensure that random data is evenly distributed, the size of each set U_{i} should be as close as possible to $|U| / m$ - that is,

$$
\text { either }\left|U_{i}\right|=\left\lfloor\frac{|U|}{m}\right\rfloor \text { or }\left|U_{i}\right|=\left\lceil\frac{|U|}{m}\right\rceil
$$

for each i.

Proof.

$|U| / m:=10^{9} / 40=25000000$
U_{19} : all integers between 0 and $10^{9}-1$ that start with 19,59 , or 99

- $\left|U_{19}\right|=3\left(1+10+100+1000+\cdots+10^{7}\right)=33333333$
U_{20} : all integers between 0 and $10^{9}-1$ that start with 20 or 60
- $\left|U_{20}\right|=2\left(1+10+100+1000+\cdots+10^{7}\right)=22222222$

Consequence: the hash function does not distribute keys evenly throughout the hash table

Spatial Locality: frequently-used resources are often clustered close together.

Examples:

- The first two digits of student IDs at the University of Calgary were once the same as the last two digits of the first year of the student's program
- Early digits of an employee's ID number might indicate the department in which the employee works, or (for a large company) the employee's geographical location

Principles

The following principles should be followed in order to avoid some of the problems already mentioned.
(1) Calculation of the hash function should involve the entire search key - not just a part of it.
(2) If a hash function uses modular arithmetic then the base should be prime, that is, if h has the form

$$
h(x)=x \bmod m
$$

then m should be a prime number.
Note: The examples from the previous lecture did not follow these principles - they were designed to be easy to understand rather than to be useful in practice!

In the above examples, a hash function like the previous example

$$
h(x)=(\text { first two digits of } x) \bmod 40
$$

would be a terrible choice!
Example: Consider the hash table shape if this was used when keys were the ID numbers for (older) students at U of C !

Conclusion: A function is generally a poor choice for a hash function if it maps many keys that are close together to the same location.

Example

Consider the string "rabbit" - using www.lookuptables.com we obtain:

r	a	b	b	i	t
114	97	98	98	105	116

We would then map the string "rabbit" to the natural number
$114 \times 128^{5}+97 \times 128^{4}+98 \times 128^{3}+98 \times 128^{2}+105 \times 128+116$.
Written in standard form (as a decimal integer), this is
3943255553268
The value h (rabbit) will be $\widehat{h}(3943255553268)$, for a function

$$
\widehat{h}: \mathbb{N} \rightarrow\{0,1, \ldots, m-1\}
$$

Implementation Issue: Avoiding overflow when applying a hash function to a character string

Example: Suppose we wish to use the division method, when $m=37$ and our search keys are character strings (using the ASCII character set).

- We would like to be able to decide that "rabbit" should be hashed to

$$
3943255553268 \bmod 37=24
$$

without having to compute the extremely large integer,

$$
3943255553268
$$

The Division Method

Assumption from now on: k is an integer (eg: 3943255553268).
Division Method: Choose

$$
h(k)=k \bmod m
$$

where m is the hash table size.
Poor Choices for m : m should not have (lots of) small factors.

- In particular, m should certainly not be a power of either two or ten - or close to any such powers!

Good Choice: Choose m to be a prime number (but not close to 2^{ℓ} or 10^{ℓ} for any integer ℓ).

Implementation Issue

Useful Properties:

- Horner's Rule: For natural numbers $a_{n}, a_{n-1}, \ldots, a_{0}$, evaluate $a_{n} \cdot B^{n}+a_{n-1} \cdot B^{n-1}+\cdots+a_{0}$ using the formula

$$
\left(\cdots\left(\left(a_{n} \cdot B+a_{n-1}\right) \cdot B+a_{n-2}\right) \cdot B+\cdots+a_{0}\right)
$$

- For integers x and y,

$$
(x+y) \bmod m=((x \bmod m)+(y \bmod m)) \bmod m
$$

For integers a and x,

$$
(a \cdot x) \bmod m=((a \bmod m) \cdot(x \bmod m)) \bmod m
$$

along the way!

Two Kinds
 The Division Method
 Implementation Issue (cont.)

Application: If the symbols in a character string α are mapped to the numbers $a_{n}, a_{n-1}, \ldots, a_{0}$ (from right to left), then $h(\alpha)$ can be computed as follows:

```
\(c=a_{n} \bmod m\)
\(i=n\)
while \((i>0)\) do
    \(i=i-1\)
    \(c=\left(((c \cdot(B \bmod m)) \bmod m)+\left(a_{i} \bmod m\right)\right) \bmod m\)
end while
return \(c\)
```

Note: If m is not too large and $B<m$, the complicated expression can be simplified (by removing some of the middle divisions with remainder by m) without causing overflow.

Difficulty: This involves multiplication by a real number. Computers cannot generally perform such multiplications exactly.

Solution: Suppose (as usual) that a word of computer memory can be used to represent an integer between 0 and $2^{w}-1$ for some natural number w.

- Choose $A=s / 2^{w}$ for some $s \in \mathbb{N}$ such that $0<s<2^{w}$.
- Implication: If $0 \leq k<2^{w}-1$ then $h(k)$ can be computed correctly using "double-precision" integer arithmetic.

Exercise: Figure out how to use Horner's Rule to compute h efficiently and accurately when keys are character strings!

If k is a natural number, $h(k)$ is a function that depends on a real number A such that $0<A<1$ and that is computed as follows.

$$
\begin{aligned}
& c=k \times A \\
& c=c-\lfloor c\rfloor \\
& h(k)=\lfloor m \times c\rfloor(\text { an integer between } 0 \text { and } m-1)
\end{aligned}
$$

In the middle step we are computing the "fractional part" of the real number c. For example, if we generated a real number

$$
27.532986 \ldots
$$

after step 1, then we would obtain $0.532986 \ldots$ after step 2.

Advantage of This Method: The choice of m is less critical.

What is Important, Instead?

- Some choices of A work better than others!
- Optimal choice depends on characteristics of data being hashed.
- Knuth: Choosing

$$
A \approx(\sqrt{5}-1) / 2=0.6180339887 \ldots
$$

is likely to work well.

Universal Hashing

Universal Hashing:

- A method of choosing the hash function in a random way
- Works well if
- The data to be hashed is "static" (it does not change much, or at all, over time)
- The hash function is chosen independently of the data to be hashed.

The probability that the randomly chosen hash function works poorly, on any fixed set of data, is provably small!

See Section 11.3.3 of Introduction to Algorithms for additional details.

References

- Frank M. Carrano and Janet J. Prichard Data Abstraction \& Problem Solving with Java: Walls \& Mirrors
Second Edition, Pearson Education, 2006
- Donald E. Knuth

The Art of Computer Programming
Volume 3: Sorting and Searching
Addison-Wesley, 1973

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein Introduction to Algorithms
Second Edition, McGraw-Hill, 2001
- Textbook, Chapter 9.3 and 9.4

