
Computer Science 331
Hash Tables with Chaining

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #18

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 1 / 26

Outline

1 Introduction

2 Hash Tables with Chaining

3 Cost Analysis

4 Details
Concepts from Probability Theory
Average Length
Unsuccessful Search
Successful Search

5 A Variation

6 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 2 / 26

Introduction

Common Situation

We wish to use a dictionary (or mapping), under the following
circumstances:

The “universe” of possible values for keys is extremely large.

We have a much smaller bound on the (maximal) size of the
dictionary we will need to support.
The only dictionary operations we need are

initialization of an empty dictionary,
searches for items in the dictionary,
insertions of new items into the dictionary,
deletions of items from the dictionary.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 3 / 26

Introduction

What is a Hash Table?

A hash table is a generalization of an ordinary array.

Features:

Array size is generally chosen to be comparable to (perhaps, a
small multiple of) our bound on dictionary size

Worst-case performance is generally poor

However, the average-case performance is extremely good —
better than that of the other implementations of a dictionary we
have considered!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 4 / 26

Introduction

Notation and Definitions

U: Universe : The set of possible values for keys

m: Table Size : The size of the array used to build
a hash table

T : The array that is used.

h: Hash Function : A function

h : U → {0, 1, . . . , m − 1}

used to map keys to array locations

Idea: try to store element x with key k in location T [h(k)].

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 5 / 26

Introduction

General Difficulty: Collisions

More terminology:

A key k hashes to an array location ` if h(k) = `.

A collision occurs if two keys k1 and k2 (used in the dictionary)
hash to the same location, that is,

h(k1) = h(k2) .

Note: Collisions are unavoidable if the size of the dictionary is greater
than the table size.

There are several different kinds of hash tables that use different ways
to deal with collisions.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 6 / 26

Hash Tables with Chaining

Collision Resolution with Chaining

In a hash table with chaining :

we put all the keys (used in the dictionary) that hash to the same
location ` into a linked list.

For 0 ≤ ` < m, T [`] is a pointer/reference to the head of the linked
list for location `.

Abuse of Notation: Sometimes T [`] will be used as the name for
the above linked list (instead of a pointer to it).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 7 / 26

Hash Tables with Chaining

Example

U: {1, 2, . . . , 200}

m: 8

T : As shown to the left.

h: Function such that

h : {1, 2, . . . , 200} → {0, 1, . . . , 7},

eg. h(k) = k mod 8 for k ∈ U.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 8 / 26

Hash Tables with Chaining

Dictionary Operations

Search for an item with key k ;

Search for k in the linked list T [h(k)].

Insertion of an item I with key k ;

Search for k in the linked list T [h(k)].

If the search was unsuccessful, insert I onto the front of this
linked list.

Deletion of an item with key k ;

Perform a deletion of an item with key k from the linked
list T [h(k)].

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 9 / 26

Cost Analysis

Worst-Case Analysis

Cost of an operation involving a key k is essentially the cost the same
operation involving k , using the linked list T [h(k)].

Problem:

It is possible for all dictionary items to be part of this linked list!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 10 / 26

Cost Analysis

Average Case Analysis

We will consider the average cost of dictionary operations when a
hash table is used to represent a dictionary with n elements.

The average cost of these operations depends on

the likelihood of each kind of operation, and

the shape of the hash table.

The shape of the hash table only depends on the locations to which
keys are hashed — not on the values of the keys, themselves.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 11 / 26

Cost Analysis

Simple Uniform Hashing

Assumption: Simple Uniform Hashing:

Each key is hashed to location ` with the same probability, 1
m , for

0 ≤ ` < m.

Furthermore, each key is hashed to a location independently of
where any other key is hashed to.

That is: If k1, k2, . . . , kn are the keys in the dictionary then

h(k1) = `1 and h(k2) = `2 and · · · and h(kn) = `n

with probability (1/m)n, for each choice of locations `1, `2, . . . , `n.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 12 / 26

Cost Analysis

Load Factor

Load Factor of T : The average λ of the lengths of the linked lists (or
“chains”) T [0], T [1], . . . , T [m − 1].

Claim:
λ = n/m (hash table has m locations, dictionary has n elements).

Proof.
Suppose T [i] has length ni for 0 ≤ i < m.

Then λ = 1
m (n0 + n1 + · · ·+ nm−1) (by definition).

However, since each key is hashed to exactly one location, and
there are n keys, n0 + n1 + · · ·+ nm−1 = n, so λ = n/m.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 13 / 26

Cost Analysis

Average Case Analysis: Summary

Expected Numbers of Comparisons Required:

Unsuccessful Search for a key k :

Assumption: No additional assumptions required.

Expected Cost:

Successful Search:

Assumption: Search for each key with probability 1
n

Expected Cost:

Insertion of New Element:

Deletion of Existing Element:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 14 / 26

Details Concepts from Probability Theory

Concepts from Probability Theory

Sample Space: Finite set S of events in which we are interested.

Probability Distribution: Function Pr : S → R such that

0 ≤ Pr(s) ≤ 1 for all s ∈ S and
∑
s∈S

Pr(s) = 1 .

Random Variable: A real valued function of S. That is, a function
X : S → R.

Expected Value of a Random Variable: The expected value of a
random variable X is

E[X] =
∑
s∈S

Pr(s) · X (s) .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 15 / 26

Details Concepts from Probability Theory

Application to Hash Tables

If we are interested in analyzing the shape of the hash table including
keys k1, k2, . . . , kn then the sample space S includes n-tuples

(`1, `2, . . . , `n)

of locations of these keys (in the hash table).

The “event” (`1, `2, . . . , `n) occurs if

h(k1) = `1 and h(k2) = `2 and · · ·and h(kn) = `n.

One random variable of interest: ni , the length of T [i]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 16 / 26

Details Concepts from Probability Theory

More About Random Variables

Suppose that a random variable X can only have values 0, 1, 2, . . . , t .

Notation: For each integer i , write Pr(X = i) =
∑
s∈S

X(s)=i

Pr(s).

Claim:
If the only possible values for X are 0, 1, 2, . . . , t then

E[X] =
t∑

i=0

i · Pr(X = i).

Proof.
Exercise.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 17 / 26

Details Concepts from Probability Theory

Linearity of Expectation

If a random variable X is a sum of t other random variables,

X = X1 + X2 + · · ·+ Xt ,

then

E[X] = E[X1 + X2 + · · ·+ Xt]

= E[X1] + E[X2] + · · ·+ E[Xt] .

Application: We can find the expected value of X by finding the
expected values of each of X1, X2, . . . , Xt and then adding these
together.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 18 / 26

Details Average Length

Computing the Average Length Another Way

Consider the random variable ni (length of list T [i]):

ni = Xi,1 + Xi,2 + . . . , +Xi,n where

Xi,j =

{
1 if h(kj) = i

0 if h(kj) 6= i ,

and k1, k2, . . . , kn are the keys in the dictionary.

Since Xi,j ∈ {0, 1}, E[Xi,j] = Pr(Xi,j = 1) = 1/m by the Simple
Uniform Hashing assumption.

Linearity of Expectation can be used to show that

E[ni] = E

 n∑
j=1

Xi,j

 =
n∑

j=1

E[Xi,j] = n
m .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 19 / 26

Details Unsuccessful Search

Expected Cost of an Unsuccessful Search

Suppose that:

k1, k2, . . . , kn are keys in the dictionary, and

we perform an unsuccessful search for a key k .

If we do not include comparisons to the null pointer, then the number of
comparisons for an unsuccessful search for k is

X1 + X2 + · · ·+ Xn

where

Xi =

{
1 if h(k) = h(ki)

0 if h(k) 6= h(ki)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 20 / 26

Details Unsuccessful Search

Expected Cost of an Unsuccessful Search

The Uniform Simple Hashing assumption can be used to show that

E[Xi] = 1
m ,

no matter what value h(k) has.

Linearity of Expectation can be used to show that the expected
number of comparisons is

E[X1] + E[X2] + · · ·+ E[Xn] = n
m = λ.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 21 / 26

Details Successful Search

Expected Cost of a Successful Search for ki

Suppose keys were introduced in order

k1, k2, . . . , kn.

Consider a successful search for ki .

Note: ki appears before any of

k1, k2, . . . , ki−1

that are in the same linked list, and after any of

ki+1, ki+2, . . . , kn

that are in the same linked list.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 22 / 26

Details Successful Search

Expected Cost of a Successful Search for ki

Number of comparisons to search for ki is, therefore,

Yi = 1 + Xi+1 + Xi+2 + · · ·+ Xn

where

Xj =

{
1 if h(kj) = h(ki)

0 if h(kj) 6= h(ki)

Under the Uniform Simple Hashing assumption, E[Xj] = 1
m .

By Linearity of Expectations,

E[Yi] = 1 + (n − i) ·
(1

m

)
= 1 + n−i

m .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 23 / 26

Details Successful Search

Expected Cost of a Successful Search

Additional Assumption: We search for ki with probability 1
n .

One can show that the expected cost of a successful search is

1
n (E[Y1] + E[Y2] + · · ·+ E[Yn]) = 1 + λ

2 −
λ
2n ,

under these assumptions, as claimed.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 24 / 26

A Variation

A Variation

Suppose that the universe U is ordered, so that we can also ask
whether k1 ≤ k2 for any two keys k1 and k2.

In this case we could maintain the keys in each of our lists in sorted
order.

Worst case costs for operations are unchanged.

Expected cost for a successful search using the usual
assumptions is also unchanged

However, the expected cost for an unsuccessful search is
somewhat reduced — because we can use the list ordering to end
an unsuccessful search a bit earlier.

The overhead to maintain sorted order is insignificant, so this
optimization is worthwhile.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 25 / 26

References

References

Textbook, Section 9.3 — description of hash tables as a data
structure for implementing Java’s Set and Map interfaces (recall
that Map is similar to Dictionary). Discussion of “Chaining” begins
on p.479.

Textbook, Section 9.4 — implementations in Java of hash tables
with chaining and (the topic of next lecture) open addressing.

Introduction to Algorithms, Section 11.2 — additional information
about hash tables with chaining (including much of the material in
these notes)

Introduction to Algorithms, Appendix C — more information about
useful concepts from probability and statistics

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 26 / 26

	Introduction
	Hash Tables with Chaining
	Cost Analysis
	Details
	Concepts from Probability Theory
	Average Length
	Unsuccessful Search
	Successful Search

	A Variation
	References

