Outline

Computer Science 331

Average Case Analysis: Binary Search Trees

Mike Jacobson
Department of Computer Science
University of Calgary

Lecture \#17

Operations on a Binary Search Tree T...

- Require a walk down (part of) a path from the root to a leaf of the tree
- Constant time is required for each node that is visited

Thus, the worst-case time of each operation is:

- linear in the height of T
(1) Motivation and ObjectiveDistribution of Binary Search TreesExponential-Height
- Definition
- Upper Bound on Average Exponential Height

4. Average Height

- Relating Height and Exponential Height

If a binary search tree T has size n and height h then

$$
n \leq 2^{h+1}-1, \quad \text { so that } \quad h \geq \log _{2}(n+1)-1
$$

and

$$
n \geq h+1, \quad \text { so that } h \leq n-1 .
$$

Worst Case: These bounds cannot be improved. In particular, $h=n-1$ in some cases.

Average Case: It seems that $h \in \Theta(\log n)$ most of the time.

Objective:

- Prove that the height of a binary search tree really is logarithmic in its size, "most of the time."

Difficulty:

- This - or any other "average case analysis" - requires an assumption about how frequently each binary search tree (of a given size) occurs.
- If our assumption is inaccurate then so is our analysis!
- T_{1} is generated by inserting a sequence of values $x_{1}, x_{2}, \ldots, x_{n}$ into an initially empty tree, and
- T_{2} is generated by inserting a sequence of values $y_{1}, y_{2}, \ldots, y_{n}$ into an initially empty tree, and
- for all i, j such that $1 \leq i, j \leq n$,

$$
x_{i} \leq x_{j} \text { if and only if } y_{i} \leq y_{j}
$$

then T_{1} and T_{2} have the same shape - and the same height.

Problem: There are infinitely many binary search trees of a given size!
Consider the following binary search trees, each obtained by inserting four elements into an empty tree.

Insertion Order: 1, 4, 3, 2
Insertion Order: b, z, k, f

Conclusion: It is sufficient to consider the relative order of the inserted keys when considering the height of a binary search tree.

Condition and Assumption for Analysis:

- Condition: We will consider binary search trees of size n, produced by inserting $1,2, \ldots, n$ into an empty tree in some order
- Fact: There are $1 \times 2 \times \cdots \times n=n$! possible relative orders of these values
- Assumption: We will assume that each of these relative orders is equally likely.

Exponential-Height

Insertion order appears above each tree.
$T_{1}: 1,2,3$

$T_{2}: 1,3,2$

$T_{3}: 2,1,3$

$T_{4}: 2,3,1$

$T_{5}: 3,1,2$

$T_{6}: 3,2,1$

Note: Tree shapes do not all occur with the same probability (under our assumption).

Trees with Root i

The trees with root i are as follows:

R_{i-1} : BST with $i-1$ nodes $1,2, \ldots, i-1$

- all $(i-1)$! relative orders equally likely
R_{n-i} : BST with $n-i$ nodes $i+1, i+2, \ldots, n$
- all $(n-i)$! relative orders equally likely

If a binary search tree has height h, its exponential-height is 2^{h}.
Heights and Exponential Heights of Previous Trees

i	1	2	3	4	5	6
height $\left(T_{i}\right)$	2	2	1	1	2	2
$\exp -\operatorname{height}\left(T_{i}\right)$	4	4	2	2	4	4

Average Exponential Height if $n=3$ (Written as Y_{n}):

$$
\mathrm{E}(\exp -\text { height })=Y_{3}=\frac{1}{6}(4+4+2+2+4+4)=\frac{10}{3}
$$

Goal: determine an upper bound on Y_{n}, derive bound on avg. height

Exponential-Height Upper Bound on Average Exponential Height

Exponential Height with Root i

Bounds on height and exponential height:

- If a tree T has a left subtree with height h_{L} and a right subtree with height h_{R}, then height of T is $1+\max \left(h_{L}, h_{R}\right)$
- If a tree T has a left subtree with exp-height H_{L} and a right subtree with exp-height H_{R}, then the exp-height of T is

$$
2 \cdot \max \left(H_{L}, H_{R}\right) \leq 2 \cdot\left(H_{L}+H_{R}\right) .
$$

Consequence: The average exponential-height of a binary search tree with n nodes $(1,2, \ldots, n)$ and root i is

$$
Y_{n, i}=2 \cdot \max \left(Y_{i-1}, Y_{n-i}\right) \leq 2 \cdot\left(Y_{i-1}+Y_{n-i}\right)
$$

Relationship holds for $i=1$ and $i=n$ if we "define" Y_{0} to be 0 .

Recurrence for Y_{n}

Since every binary search tree with size one has height zero,

$$
Y_{1}=2^{0}=1
$$

A binary search tree with n nodes $1,2, \ldots, n$ has root i with likelihood $1 / n$ (under our assumption). Thus

$$
\begin{aligned}
Y_{n} & =\frac{1}{n} \sum_{i=1}^{n} Y_{n, i} \\
& \leq \frac{2}{n} \sum_{i=1}^{n}\left(Y_{n-i}+Y_{i-1}\right) \\
& =\frac{4}{n} \sum_{i=0}^{n-1} Y_{i} .
\end{aligned}
$$

Average Height Relating Height and Exponential Height

Useful Property of $f(x)=2^{x}$

Consider the function $f(x)=2^{x}$:

This function is convex: If $\alpha \geq 0, \beta \geq 0$, and $\alpha+\beta=1$ then

$$
f\left(\alpha x_{1}+\beta x_{2}\right) \leq \alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right) .
$$

Bounding Y_{n} Using the Recurrence

It is possible to use mathematical induction to show that

$$
\frac{4}{n} \sum_{i=0}^{n-1}\binom{i+3}{3}=\frac{4}{n}\binom{n+3}{4}=\binom{n+3}{3}
$$

where the binomial coefficient $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
It is also easily checked that

$$
Y_{1}=1=\frac{1}{4}\binom{1+3}{3} .
$$

These can be used with the previous inequality to prove that

$$
Y_{n} \leq \frac{1}{4}\binom{n+3}{3}=\frac{(n+3)(n+2)(n+1)}{24}
$$

for every integer $n \geq 1$.

Theorem 1 (Jensen's Inequality)
For every integer $m \geq 1$ and positive values $x_{1}, x_{2}, \ldots, x_{m}$,

$$
f\left(\frac{1}{m}\left(x_{1}+x_{2}+\cdots+x_{m}\right)\right) \leq \frac{1}{m}\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{m}\right)\right)
$$

if the function f is convex.

Can be proved by induction on m.
Because 2^{x} is convex, Jensen's Inequality is applicable

Let X_{n} be the average height of a binary search tree with size n (under our assumption). Then

$$
X_{n}=\frac{1}{m}\left(h_{1}+h_{2}+\cdots+h_{m}\right)
$$

where $m=n!$ and $h_{i}=\operatorname{height}\left(T_{i}\right)$.

Consequence of Previous Inequality:

$$
2^{X_{n}} \leq \frac{1}{m}\left(2^{h_{1}}+2^{h_{2}}+\cdots+2^{h_{m}}\right)=Y_{n} .
$$

Note that this implies

$$
X_{n} \leq \log _{2} Y_{n}
$$

Corollaries: Under Our Assumption about Construction of Trees
(1) Average height of a binary search tree of size n is

$$
X_{n} \leq \log _{2} Y_{n} \leq \log _{2}\left(\frac{1}{4}\binom{n+3}{3}\right),
$$

so that $X_{n} \leq \log _{2} n^{3}=3 \log _{2} n$ for sufficiently large n.
(2) If c is a positive integer, n is sufficiently large, and T is a randomly constructed BST with size n, then the probability that

$$
\text { height }(T) \geq 3 c \log _{2} n
$$

is less than $\frac{1}{c}$.

