
Computer Science 331
Red Black Trees: Rotations and Insertions

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #15

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 1 / 26

Outline

1 Rotations

2 Insertion: Outline and Strategy
Beginning of an Insertion
How To Continue

3 Insertions: Main Case
Subcases
First Subcase
Second Subcase
Third Subcase

4 Insertions Other Cases

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 2 / 26

Rotations

What is a Rotation?

Rotation:

a local operation on a binary search tree

preserves the binary search tree property

used to implement operations on red-black trees
(and other height-balanced trees)
two types:

Left Rotations
Right Rotations

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 3 / 26

Rotations

Left Rotation: Tree Before Rotation

Tree Before Performing Left Rotation at β:

β

δ
T1

T2 T3

Assumption: β has a right child, δ

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 4 / 26



Rotations

Useful Consequences of Binary Search Tree Property

Lemma 1
For all α ∈ T1, γ ∈ T2, and ζ ∈ T3,

α < β < γ < δ < ζ

Proof.

T1: is the left subtree of β (so α < β)

T2: is contained in the right subtree of β (so β < γ)
is the left subtree of δ (so γ < δ)

T3: is the right subtree of δ (so δ < ζ)

Thus, T is a BST.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 5 / 26

Rotations

Left Rotation: Tree After Rotation

T3

T2T1

δ

β

Notice that this is still a BST (inequalities on previous slide still hold)

Pseudocode: Introduction to Algorithms, page 278

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 6 / 26

Rotations

Right Rotation: Tree Before Rotation

Tree Before Performing Right Rotation at δ:

T3

T2T1

δ

β

Assumption: δ has a left child, β

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 7 / 26

Rotations

Right Rotation: Tree After Rotation

β

δ
T1

T2 T3

Note: This is both the mirror-image, and the reversal, of a left-rotation.

Pseudocode: text, page 570

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 8 / 26



Rotations

Effects of a Rotation

Exercises:
1 Confirm that a tree is a BST after a rotation if it was one before.
2 Confirm that a (single left or right) rotation can be performed using

Θ(1) operations

including comparisons and assignments of pointers or references

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 9 / 26

Insertion: Outline and Strategy Beginning of an Insertion

Red-Black Properties

Recall that the following properties must be maintained:
1 Every node is either red or black.
2 The root is black.
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black.
5 For each node, all paths from the node to descendant leaves

contain the same number of black nodes.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 10 / 26

Insertion: Outline and Strategy Beginning of an Insertion

Beginning an Insertion

Suppose we wish to insert an object x into a red black tree T .

if T includes an object with the same key as x then

throw KeyFoundException (and terminate)

else

Insert a new node storing the object x in the usual way.
Both of the children of this node should be (black) leaves.

Color the new node red.

Let z be a pointer to this new node.

Proceed as described next...

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 11 / 26

Insertion: Outline and Strategy How To Continue

How To Continue

Strategy for Finishing the Operation:
At this point, T is not necessarily a red-black tree, but there is only
a problem at one problem area in the tree.

newly-inserted node (color red) may violate red-black tree
properties #2 or #4

Rotations and recoloring of nodes will be used to move the
“problem area” closer to the root.

Once the “problem area” has been moved to the root, at most one
correction turns T back into a red-black tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 12 / 26



Insertion: Outline and Strategy How To Continue

Structure of Rest of Insertion Algorithm

z initially points to the newly-inserted node (color red)

while the parent of z is red do
Make an adjustment (to be described shortly)

end while
if z is the root then

Change the color of z to black
end if

Note:

z always points to a red node; this is the only place where there
might be a problem.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 13 / 26

Insertion: Outline and Strategy How To Continue

Loop Invariant

z is red and exactly one of the following is true:
1 The parent of z is also red.

All other red-black properties are satisfied.

2 z is the root.
All other red-black properties are satisfied.

3 All red-black properties are satisfied.
Thus T is a red-black tree.

Note: Loop invariant + failure of loop test⇒ 2 or 3.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 14 / 26

Insertion: Outline and Strategy How To Continue

Loop Variant

Loop Variant: depth of z

Consequence:

number of executions of loop body is linear in the height of T .

Note:

We will need to check that this is a loop variant!

This is the case if z is moved closer to the root after every
iteration.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 15 / 26

Insertions: Main Case Subcases

Subcases of Case 1

Note : Since the parent of z is red it is not the root; the grandparent
of z must be black.

1 Parent of z is a left child; sibling y of parent of z is red.
1 z is a left child.
2 z is a right child.

2 Parent of z is a left child; sibling y of parent of z is black.
z is a right child.

3 Parent of z is a left child; sibling y of parent of z is black.
z is a left child.

Subcases 4–6: Mirror images of subcases 1–3:

Exchange “left” and “right;” parent(z) is now a right child

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 16 / 26



Insertions: Main Case First Subcase

Subcase 1a: Tree Before Adjustment

z is left child, parent of z is a left child; sibling y of parent of z is red

γ

δ

T4 T5

β

α

T

T

z

T1 2

3

Adjustment:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 17 / 26

Insertions: Main Case First Subcase

Subcase 1a: Tree After Adjustment

T4 T5

α

T

T

T1 2

3

γ

β δ

z

Node z may still cause violations of red-black tree properties #2 or #4,
but z has moved closer to the root.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 18 / 26

Insertions: Main Case First Subcase

Subcase 1b: Tree Before Adjustment

z is right child; parent of z is a left child; sibling y of parent of z is red;

γ

T1

α

β

T2 T3

δ

T4 T5

z

Adjustment:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 19 / 26

Insertions: Main Case First Subcase

Subcase 1b: Tree After Adjustment

T4 T5T1

T2 T3

β

γ

α δ

z

Node z may still cause violations of red-black tree properties #2 or #4,
but z has moved closer to the root.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 20 / 26



Insertions: Main Case Second Subcase

Case 2: Tree Before Adjustment

z is right child; parent of z is left child; sibling y of parent of z is black;

T1

α

β

T2 T3

T4 T5

z

δ

γ

Adjustment:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 21 / 26

Insertions: Main Case Second Subcase

Case 2: Tree After Adjustment

δ

α

T T1 2 T

TT

3

4 5

β

γ
z

Parent of z is now black, so the while loop terminates and we are
finished.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 22 / 26

Insertions: Main Case Third Subcase

Case 3: Tree Before Adjustment

z is left child; parent of z is left child; sibling y of parent of z is black;

T4 T5

β

α

T

T

z

T1 2

3

δ

γ

Adjustment:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 23 / 26

Insertions: Main Case Third Subcase

Case 3: Tree After Adjustment

δ

α

T T1 2 T

TT

3

4 5

β

γ
z

Parent of z is now black, so the while loop terminates and we are
finished.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 24 / 26



Insertions: Main Case Third Subcase

Exercises

3 Describe cases 4–6 and draw the corresponding trees.
4 Confirm that the “loop invariant” holds after each adjustment.
5 Confirm that the distance of z from the root decreases after each

adjustment — so the claimed “loop variant” satisfies the properties
it should.

Note: These cases are described in the text (Section 11.3), although
the numbering of the cases is slightly different from our’s.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 25 / 26

Insertions Other Cases

Handling Cases B and C

Case B: z is the root (so, the root is red)

All other red-black properties are satisfied.

Adjustment: change the color of the root to black.

Case C: T is a red-black tree.

Adjustment: We’re finished!

Pseudocode for adjustments: Introduction to Algorithms, page 281

Exercises :
6 Show that the “insertion” algorithm as a whole is correct.
7 Confirm that the total number of steps used by the insertion

algorithm is at most linear in the depth of the given tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 26 / 26


	Rotations
	Insertion: Outline and Strategy
	Beginning of an Insertion
	How To Continue

	Insertions: Main Case
	Subcases
	First Subcase
	Second Subcase
	Third Subcase

	Insertions Other Cases

