Outline

Computer Science 331

Red Black Trees: Rotations and Insertions

Mike Jacobson

Department of Computer Science
University of Calgary
Lecture \#15

Rotations
(2)

Insertion: Outline and Strategy

- Beginning of an Insertion
- How To ContinueInsertions: Main Case
- Subcases
- First Subcase
- Second Subcase
- Third SubcaseInsertions Other Cases

Rotations

What is a Rotation?

Rotations
Left Rotation: Tree Before Rotation

Tree Before Performing Left Rotation at β :

Assumption: β has a right child, δ

Lemma 1

For all $\alpha \in T_{1}, \gamma \in T_{2}$, and $\zeta \in T_{3}$,

$$
\alpha<\beta<\gamma<\delta<\zeta
$$

Proof.

T_{1} : is the left subtree of β (so $\alpha<\beta$)
T_{2} : is contained in the right subtree of β (so $\beta<\gamma$) is the left subtree of δ (so $\gamma<\delta$)
T_{3} : is the right subtree of δ (so $\delta<\zeta$)
Thus, T is a BST.

Rotations

Right Rotation: Tree Before Rotation

Note: This is both the mirror-image, and the reversal, of a left-rotation.

Exercises:

(1) Confirm that a tree is a BST after a rotation if it was one before.
(2) Confirm that a (single left or right) rotation can be performed using $\Theta(1)$ operations
including comparisons and assignments of pointers or references

Suppose we wish to insert an object x into a red black tree T.

Beginning an Insertion

Insertion: Outline and Strategy Beginning of an Insertion

if T includes an object with the same key as x then

- throw KeyFoundException (and terminate)
else
- Insert a new node storing the object x in the usual way.

Both of the children of this node should be (black) leaves.
Color the new node red.

- Let z be a pointer to this new node.
- Proceed as described next...

Recall that the following properties must be maintained:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NIL) is black.
(9) If a node is red, then both its children are black.
(5) For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Strategy for Finishing the Operation:

- At this point, T is not necessarily a red-black tree, but there is only a problem at one problem area in the tree.
- newly-inserted node (color red) may violate red-black tree properties \#2 or \#4
- Rotations and recoloring of nodes will be used to move the "problem area" closer to the root.
- Once the "problem area" has been moved to the root, at most one correction turns T back into a red-black tree.

z initially points to the newly-inserted node (color red)

while the parent of z is red do

Make an adjustment (to be described shortly)

end while

if z is the root then
Change the color of z to black
end if

Note:

- z always points to a red node; this is the only place where there might be a problem.

Insertion: Outline and Strategy How To Continue

Loop Variant

Loop Variant: depth of z

Consequence:

- number of executions of loop body is linear in the height of T.

Note:

- We will need to check that this is a loop variant!
- This is the case if z is moved closer to the root after every iteration
z is red and exactly one of the following is true:
(1) The parent of z is also red.

All other red-black properties are satisfied.
(2) z is the root.

All other red-black properties are satisfied.
(3) All red-black properties are satisfied.

Thus T is a red-black tree.
Note: Loop invariant + failure of loop test $\Rightarrow 2$ or 3 .
z is left child, parent of z is a left child; sibling y of parent of z is red

Adjustment:
-

Subcase 1b: Tree Before Adjustment

z is right child; parent of z is a left child; sibling y of parent of z is red;

Adjustment:
-

Node z may still cause violations of red-black tree properties \#2 or \#4, but z has moved closer to the root.

Subcase 1b: Tree After Adjustment

Node z may still cause violations of red-black tree properties \#2 or \#4, but z has moved closer to the root.

Case 2: Tree Before Adjustment

Case 2: Tree After Adjustment
z is right child; parent of z is left child; sibling y of parent of z is black;

Adjustment:
-
-

Case 3: Tree Before Adjustment

Case 3: Tree After Adjustment

z is left child; parent of z is left child; sibling y of parent of z is black;

Adjustment:

(3) Describe cases 4-6 and draw the corresponding trees.
(9) Confirm that the "loop invariant" holds after each adjustment.
(3) Confirm that the distance of z from the root decreases after each adjustment - so the claimed "loop variant" satisfies the properties it should.

Note: These cases are described in the text (Section 11.3), although the numbering of the cases is slightly different from our's.

Case B: z is the root (so, the root is red)

- All other red-black properties are satisfied.
- Adjustment: change the color of the root to black.

Case C: T is a red-black tree.

- Adjustment: We're finished!

Pseudocode for adjustments: Introduction to Algorithms, page 281

Exercises:

(6) Show that the "insertion" algorithm as a whole is correct.
(3) Confirm that the total number of steps used by the insertion algorithm is at most linear in the depth of the given tree.

