Outline

Computer Science 331
 Introduction to Red-Black Trees

Mike Jacobson
Department of Computer Science
University of Calgary
Lecture \#14

Definition Definition and Example of a Red-Black Tree Definition of a Red-Black Tree

A red-black tree is a binary tree that can be used to implement the "Dictionary" ADT (also "SortedSet" and "SortedMap" interfaces from the JCF)

- Internal Nodes are used to store elements of a dictionary.
- Leaves are called "NIL nodes" and do not store elements of the set.
- Every internal node has two children (either, or both, of which might be leaves).
- The smallest red-black tree has size one (single NIL node).
- If the leaves (NIL nodes) of a red-black tree are removed then the resulting tree is a binary search tree.

Definition

- Definition and Example of a Red-Black Tree
- Implementation Details

Height-Balance

- Black-Height of a Node
- The Main Theorem: Worst Case Height Bound
- First Lemma: Bounding Size Using Black-Height
- Second Lemma: Bounding Height Using Black-Height
- Proof of the Main Theorem

Searches
(4)

What's Next

A binary search tree is a red-black tree if it satisfies the following:
(1) Every node is either red or black.
(2) The root is black.
(3) Every leaf (NIL) is black.
(9) If a node is red, then both its children are black.
(6) For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Why these are useful:

- height is in $\Theta(\log n)$ in the worst case (tree with n internal nodes)
- worst case complexity of search, insert, delete are in $\Theta(\log n)$

- "Black" internal nodes are drawn as circles
- "Red" nodes are drawn as diamonds
- NIL nodes (leaves) are drawn as black squares

Height-Balance	Black-Height of a Node
Black-Height of a Node	

The Main Theorem

The black-height of a node x, denoted $\mathrm{bh}(x)$, is the number of black nodes on any path from, but not including, a node x down to a leaf.

Example: In the previous red-black tree,

- The black-height of the node with label 2 is:
- The black-height of the node with label 4 is:
- The black-height of the node with label 6 is:
- The black-height of the node with label 8 is:
- The black-height of the node with label 10 is:

Note: Red-Black Property \#5 implies that bh(x) is well-defined for each node x.

Example: Figure 13.1 on page 275 of the Cormen, Leiserson, Rivest, and Stein book.

- The color of a node can be represented by a Boolean value (eg, true=black, false=red), so that only one bit is needed to store the color of a node
- To save space and simplify programming, a single sentinel can replace all NIL nodes.
- The "parent" of the root node is pointed to the sentinel as well.
- An "empty" tree contains one single NIL node (the sentinel)

Theorem 1

If T is a red-black tree with n nodes then the height of T is at most $2 \log _{2}(n+1)$.

Outline of proof:

- prove a lower bound on tree size in terms of black-height
- prove an upper bound on height in terms of black-height of the tree
- combine to prove main theorem

Lemma 2

For each node x, the subtree with root x includes at least $2^{b h(x)}-1$ nodes.

Method of Proof: mathematical induction on height of the subtree with root x (using the strong form of mathematical induction)

- Base case: prove that the claim holds for subtrees of height 0
- Inductive step: prove, for all $h \geq 0$, that if the lemma is true for all subtrees with height at most $h-1$ then it also holds for all subtrees with height h.

	Height-Balance First Lemma: Bounding Size Using Black-Height
Inductive Step	

Let h be an integer such that $h \geq 0$.
Inductive Hypothesis: Suppose the claimed result holds for every node y such that the height of the tree with root y is less than h.

Let x be a node such that the height of the tree T_{x} is h.
Let n be the number of nodes of T_{x}.
Required to Show: $n \geq 2^{\text {bh(}(x)}-1$ holds for T_{x}, assuming the inductive hypothesis.
b Black-height of x
$b_{L} \quad$ Black-height of left child of x
$b_{R} \quad$ Black-height of right child of x
T_{X} Subtree with root x
h Height of T_{X}
h_{L} Height of left subtree of T_{X}
h_{R} Height of right subtree of T_{x}
$n \quad$ Size of T_{x}
$n_{L} \quad$ Size of left subtree of T_{X}
n_{R} Size of right subtree of T_{X}

Useful Properties Involving Size and Height
$n=n_{L}+n_{R}+1$. The n nodes of T_{x} are:

- the n_{L} nodes of the left subtree of T_{x}
- the n_{R} nodes of the right subtree of T_{x}
- one more node - the root x of T_{X}
$h=1+\max \left(h_{L}, h_{R}\right)$, so $h_{L} \leq h-1$ and $h_{R} \leq h-1$
- height of any tree (including T_{x}) is the maximum length of any path from the root to any leaf
- it follows by this definition that $h=1+\max \left(h_{L}, h_{R}\right)$
- the remaining inequalities are now easily established

Useful Property Involving Black-Height

$b_{L} \geq b-1$ and $b_{R} \geq b-1$.
Case 1: x has color red

- both children of x have color black (Red-Black Property \#4)
- Red-Black Property \#5 implies that $b_{L}=b_{R}=b-1$.

Case 2: x has color black.

- children of x could each be either red or black
- $b_{L} \geq b-1$, because by the definition of "black-height"

$$
b_{L}= \begin{cases}b & \text { if the left child of } x \text { is red } \\ b-1 & \text { if the left child of } x \text { is black. }\end{cases}
$$

- an analogous argument shows that $b_{R} \geq b-1$

Lemma 3

If T is a red-black tree then $b h(r) \geq h / 2$ where r is the root of T and h is the height of T.

Proof.

Assume that T has height h :
-
-

Proof of the Main Theorem

Searching in a Red-Black Tree

Theorem 4

If T is a red-black tree with n nodes then the height of T is at most $2 \log _{2}(n+1)$.

Proof.

Let r be the root of T. The two Lemmas state that:

$$
n \geq 2^{\mathrm{bh}(r)}-1 \quad \text { and } \quad b h(r) \geq h / 2
$$

Putting these together yields:

$$
\Rightarrow \quad \Rightarrow
$$

as required.
What's Next? Waswent

Unfortunately, insertions and deletions are more complicated because we need to preserve the "Red-Black Properties."

We will discuss these operations during the next two lectures.
Reference: To read ahead, please see
Chapter 13 of Introduction to Algorithms
(on reserve in the library)
for more information about red-black trees.
Section 11.3 of the text discusses insertion, and Chapter 11 (programming problem 6) discusses deletion.

