Computer Science 331 Introduction to Red-Black Trees

Mike Jacobson

Department of Computer Science University of Calgary

Lecture #14

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #14

Lecture #14

Definition and Example of a Red-Black Tree

Definition of a Red-Black Tree

A **red-black tree** is a binary tree that can be used to implement the "Dictionary" ADT (also "SortedSet" and "SortedMap" interfaces from the JCF)

- Internal Nodes are used to store elements of a dictionary.
- Leaves are called "NIL nodes" and do not store elements of the set.
- Every internal node has two children (either, or both, of which might be leaves).
- The smallest red-black tree has size one (single NIL node).
- If the leaves (NIL nodes) of a red-black tree are removed then the resulting tree is a binary search tree.

Outline

- Definition and Example of a Red-Black Tree
- Implementation Details
- Height-Balance
 - Black-Height of a Node
 - The Main Theorem: Worst Case Height Bound
 - First Lemma: Bounding Size Using Black-Height
 - Second Lemma: Bounding Height Using Black-Height
 - Proof of the Main Theorem
- Searches
- What's Next

Mike Jacobson (University of Calgary)

Computer Science 331

Definition and Example of a Red-Black Tree

Red-Black Properties

A binary search tree is a *red-black* tree if it satisfies the following:

- Every node is either red or black.
- The root is black.
- Every leaf (NIL) is black.
- If a node is red, then both its children are black.
- 5 For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Why these are useful:

- height is in $\Theta(\log n)$ in the worst case (tree with *n* internal nodes)
- worst case complexity of search, insert, delete are in $\Theta(\log n)$

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #14 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #14 Definition and Example of a Red-Black Tree

Example

- "Black" internal nodes are drawn as circles
- "Red" nodes are drawn as diamonds
- NIL nodes (leaves) are drawn as black squares

Mike Jacobson (University of Calgary)

Lecture #14

Computer Science 331

Lecture #14

Black-Height of a Node

The **black-height** of a node x, denoted bh(x), is the number of black nodes on any path from, but not including, a node x down to a leaf.

Example: In the previous red-black tree,

- The black-height of the node with label 2 is:
- The black-height of the node with label 4 is:
- The black-height of the node with label 6 is:
- The black-height of the node with label 8 is:
- The black-height of the node with label 10 is:

Note: Red-Black Property #5 implies that bh(x) is well-defined for each node x.

Implementation Details

Example: Figure 13.1 on page 275 of the Cormen, Leiserson, Rivest, and Stein book.

- The color of a node can be represented by a Boolean value (eg, true=black, false=red), so that only one bit is needed to store the color of a node
- To save space and simplify programming, a single sentinel can replace all NIL nodes.
- The "parent" of the root node is pointed to the sentinel as well.
- An "empty" tree contains one single NIL node (the sentinel)

Mike Jacobson (University of Calgary)

The Main Theorem

Theorem 1

If T is a red-black tree with n nodes then the height of T is at most $2 \log_2(n+1)$.

Outline of proof:

- prove a *lower bound* on tree size in terms of black-height
- prove an upper bound on height in terms of black-height of the tree
- combine to prove main theorem

Height-Balance First Lemma: Bounding Size Using Black-Height

Bounding Size Using Black-Height

Lemma 2

For each node x, the subtree with root x includes at least $2^{bh(x)} - 1$ nodes.

Method of Proof: mathematical induction on height of the subtree with root *x* (using the strong form of mathematical induction)

- Base case: prove that the claim holds for subtrees of height 0
- Inductive step: prove, for all $h \ge 0$, that if the lemma is true for all subtrees with height at most h-1 then it also holds for all subtrees with height h.

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #14

#14 9/

Mike Jacobson (University of Calgary)

Base Case (h = 0)

Computer Science 331

Lecture #14 10

10 / 10

Height-Balan

First Lemma: Bounding Size Using Black-Height

Inductive Step

Let h be an integer such that $h \ge 0$.

Inductive Hypothesis: Suppose the claimed result holds for every node *y* such that the height of the tree with root *y* is *less than h*.

Let x be a node such that the height of the tree T_x is h.

Let *n* be the number of nodes of T_x .

Required to Show: $n \ge 2^{bh(x)} - 1$ holds for T_x , assuming the inductive hypothesis.

Height-Bal

First Lemma: Bounding Size Using Black-Height

First Lemma: Bounding Size Using Black-Height

Notation for Inductive Step

b Black-height of x

b_L Black-height of left child of x

 b_R Black-height of right child of x

 T_x Subtree with root x

h Height of T_x

 h_L Height of left subtree of T_x

 h_R Height of right subtree of T_x

n Size of T_x

 n_L Size of left subtree of T_x

 n_R Size of right subtree of T_x

Height-Balance

First Lemma: Bounding Size Using Black-Height

Useful Properties Involving Size and Height

 $n = n_L + n_R + 1$. The *n* nodes of T_x are:

- the n_L nodes of the left subtree of T_x
- the n_R nodes of the right subtree of T_x
- one more node the root x of T_x

 $h = 1 + \max(h_L, h_R)$, so $h_L \le h - 1$ and $h_R \le h - 1$

- height of any tree (including T_x) is the maximum length of any path from the root to any leaf
- it follows by this definition that $h = 1 + \max(h_L, h_R)$
- the remaining inequalities are now easily established

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #14

13/1

Height-Balance

First Lemma: Bounding Size Using Black-Height

Proof of Inductive Step

Height-Balance Firs

First Lemma: Bounding Size Using Black-Height

Useful Property Involving Black-Height

 $b_L \ge b - 1$ and $b_R \ge b - 1$.

Case 1: x has color red

- both children of x have color black (Red-Black Property #4)
- Red-Black Property #5 implies that $b_l = b_R = b 1$.

Case 2: x has color black.

- children of x could each be either red or black
- $b_L \ge b 1$, because by the definition of "black-height"

$$b_L = \begin{cases} b & \text{if the left child of } x \text{ is red} \\ b - 1 & \text{if the left child of } x \text{ is black.} \end{cases}$$

• an analogous argument shows that $b_R \ge b - 1$

Mike Jacobson (University of Calgary)

Computer Science 3

Lecture #14

1//1

Height-Balan

Second Lemma: Bounding Height Using Black-Height

Bounding Height Using Black-Height

Lemma 3

If T is a red-black tree then $bh(r) \ge h/2$ where r is the root of T and h is the height of T.

Proof.

Assume that *T* has height *h* :

- •
- •

Height-Balance

Proof of the Main Theorem

Proof of the Main Theorem

Theorem 4

If T is a red-black tree with n nodes then the height of T is at most $2 \log_2(n+1)$.

Proof.

Let *r* be the root of *T*. The two Lemmas state that:

$$n \ge 2^{bh(r)} - 1$$
 and $bh(r) \ge h/2$

Putting these together yields:

 $\Rightarrow \Rightarrow$

as required.

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #14

14 1

What's Next

What's Next?

Unfortunately, *insertions* and *deletions* are more complicated because we need to preserve the "Red-Black Properties."

We will discuss these operations during the next two lectures.

Reference: To read ahead, please see

Chapter 13 of *Introduction to Algorithms* (on reserve in the library)

for more information about red-black trees.

Section 11.3 of the text discusses insertion, and Chapter 11 (programming problem 6) discusses deletion.

Searche

Searching in a Red-Black Tree

Searching in a red-black tree is *almost* the same as searching in a binary search tree.

Difference Between These Operations:

- leaves are NIL nodes that do not store values
- thus, unsuccessful searches end when a leaf is reached instead of when a null reference is encountered

Worst-Case Time to Search in a Red-Black Tree:

0

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #14