
Computer Science 331
Binary Search Trees — Insertion and Deletion

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #13

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 1 / 17

Outline

1 BST Insertion

2 BST Deletion
Case 1
Case 2
Case 3
Case 4

3 Complexity Discussion

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 2 / 17

BST Insertion

Insertion: An Example

1

3

5

6

10

7

Idea:

Nodes Visited (inserting 9):

Start at 6 :

Next node

Next node

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 3 / 17

BST Insertion

A Recursive Insertion Algorithm

// Non-recursive public function calls recursive worker function
public void insert(E key, V value)
{ root = insert(root, key, Value); }

protected
bstNode<E,V> insert(bstNode<E,V> T, E newKey, V newValue) {
if (T == null)

else if (newKey.compareTo(T.key) < 0)

else if (newKey.compareTo(T.key) > 0)

else

return T;
}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 4 / 17



BST Insertion

Analysis: Partial Correctness

Prove that insert is partially correct for all trees T of height h.

Base cases are correct (by inspection):

empty tree replaced by new node containing newKey and newValue

if T.key == newKey, a KeyFoundExcpetion is thrown

Assume that the algorithm is correct for all trees of height ≤ h − 1 :

if newKey < T.key, key/value inserted in left subtree

if newKey > T.key, key/value inserted in right subtree

in either case, algorithm is called recursively on a subtree of
height at most h − 1 and new subtree is correct by assumption

the new T is still a BST, because both children are BSTs and the
new element was added to the correct subtree

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 5 / 17

BST Insertion

Termination and Bound on Running Time

Let hi denote the height of the subtree with root x at level i of the
recursion. Consider the function f (i) = hi + 1 :

Worst case running time is Θ(h) :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 6 / 17

BST Deletion

Deletion: Four Important Cases

1

3

5

6

10

7

Key is/has . . .

1 Not Found (Eg: Delete 8)
2 At a Leaf (Eg: Delete 7)
3 One Child (Eg: Delete 10)
4 Two Children (Eg: Delete 6)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 7 / 17

BST Deletion Case 1

First Case: Key Not Found

1

3

5

6

10

7

Idea:

Nodes Visited (delete 8):

Start at 6 :

Next node

Next node

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 8 / 17



BST Deletion Case 1

Algorithm and Analysis

protected bstNode<E,V> delete(bstNode<E,V> T, E key) {
if (T != null) {
if (key.compareTo(T.key) < 0)
T.left = delete(T.left, key);

else if (key.compareTo(T..key) > 0)
T.right = delete(T.right,key);

else if ...
// found node with given key

}
else
throw new KeyNotFoundException();

return T;
}

Correctness and Efficiency For This Case:
tree is not modified if key is not found (base case will be reached)
worst-case cost Θ(h) (same as search)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 9 / 17

BST Deletion Case 2

Second Case: Key is at a Leaf

1

3

5

6

10

7

Idea:

Nodes Visited (delete 7):

Start at 6 :

Next node

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 10 / 17

BST Deletion Case 2

Algorithm and Analysis

Extension of Algorithm:

else if ()

Correctness and Efficiency For This Case:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 11 / 17

BST Deletion Case 3

Third Case: Key is at a Node with One Child

1

3

5

6

10

7

Idea:

Nodes Visited (delete 10):

Start at 6 :

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 12 / 17



BST Deletion Case 3

Algorithm and Analysis

Extension of Algorithm:

else if (T.left == null)

else if (T.right == null)

Correctness and Efficiency For This Case:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 13 / 17

BST Deletion Case 4

Fourth Case: Key is at a Node with Two Children

1

3

5

6

10

7

Idea:

Nodes Visited (delete 6):

Start at 6 :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 14 / 17

BST Deletion Case 4

Algorithm and Analysis

Extension of Algorithm:

else {

}

Correctness and Efficiency For This Case:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 15 / 17

Complexity Discussion

More on Worst Case

All primitive operations (search, insert, delete) have worst-case
complexity Θ(n)

all nodes have exactly one child (i.e., tree only has one leaf)

Eg. will occur if elements are inserted into the tree in ascending
(or descending) order

On average, the complexity is Θ(log n)

Eg. if the tree is full, the height of the tree is h = log2(n + 1)− 1

Need techniques to ensure that all trees are close to full

want h ∈ Θ(log n) in the worst case

one possibility: red-black trees (next three lectures)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 16 / 17



References

References

Binary Trees:

Text, Sections 8.1-8.3 Discussed in more detail, including
algorithms for tree traversals

Binary Search Trees:

Text, Section 8.4

Note: Deletion Case 4 (deleting a node with two children) is handled
slightly differently in the text — the node is replaced by its “in-order
predecessor” as opposed to the “in-order successor” as done in the
notes. Both methods are equally acceptable.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 17 / 17


	BST Insertion
	BST Deletion
	Case 1
	Case 2
	Case 3
	Case 4

	Complexity Discussion
	References

