

The Dictionary ADT

The Dictionary ADT

A dictionary is a finite set (no duplicates) of elements.

Each element is assumed to include

- A key, used for searches.
 - Keys are required to belong to some ordered set.
 - The keys of the elements of a dictionary are required to be distinct.
- Additional data, used for other processing.

Examples:

- a dictionary (word is the key, definition is the data)
- telephone book (name is the key, phone number is the data)

Similar to Java's Map (unordered) and SortedMap (ordered) interfaces.

The Dictionary ADT

Operations Supported

A dictionary must support the following operations:

- search(k): Search for and return a reference to an element with
 key k if one exists. Throw a KeyNotFoundException if there is no
 such element.
- insert(k,x): Add the element x with key k if no element with the same key is included already. Throw a KeyFoundException if an element with the same key already belongs to the set.
- delete(k): Remove the element with key k. Throw a KeyNotFoundException if no such element is in the dictionary

May also include isEmpty(), size()

Linked lists and arrays are two data structures that can be used to implement dictionaries. *Binary Search Trees* are another (subject of today's lecture).

Mike Jacobson (University of Calgary)

Binary Trees Definition

Binary Tree

A **binary tree** T is a hierarchical, recursively defined data structure, consisting of a set of **vertices** or **nodes**.

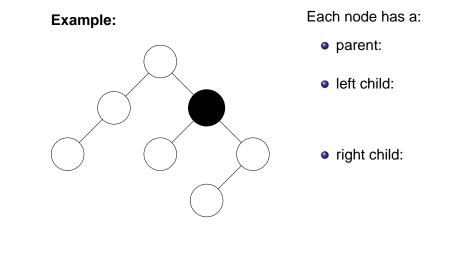
A binary tree *T* is **either**

• an "empty tree,"

or

- a structure that includes
 - the **root** of *T* (the node at the top)
 - the left subtree T_L of T ...
 - the **right subtree** T_R of T ...
- ... where both T_L and T_R are also binary trees.

Example and Implementation Details



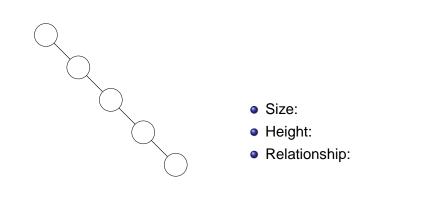
Mike Jacobson (University of Calgary) Computer Science 331	Lecture #12 5 / 20	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #12 6 / 20	
Binary Trees Additional Terminology Additional Terminology		Binary Trees Relationship Between Size and Depth Size vs. Depth: One Extreme			
Additional terms related to binary trees: • siblings: • descendant (of N): • ancestor (of N): • leaf: • size:			 Size: Height: Relationship 	:	
depth (of N):height:		This binary tree is said to b			

- all leaves have the same depth
 - all non-leaf nodes have exactly two children

Note: depth and height are sometimes (as in the text) defined in terms

of number of nodes as opposed to number of edges.

Size vs. Depth: Another Extreme



This binary tree is essentially a linked list.

Binary Search Tree

A **binary search tree** T is a data structure that can be used to implement a dictionary.

- T is a binary tree
- Each element of the dictionary is stored at a node of T, so

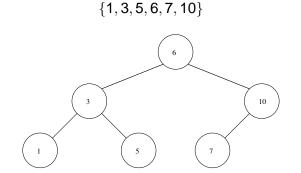
dictionary size = size of T

• In order to support efficient searching, elements are arranged to satisfy the **Binary Search Tree Property** ...

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #12 9 / 20	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #12 10 / 20
Birt	ary Search Trees Definition			Binary Search Trees Definition	
				Binary Search nees - Deminion	
Binary Search Tree	Property		Example		

Binary Search Tree Property: If *T* is nonempty, then

- The left subtree T_L is a binary search tree including all dictionary elements whose keys are *less than* the key of the element at the root
- The right subtree T_R is a binary search tree including all dictionary elements whose keys are *greater than* the key of the element at the root



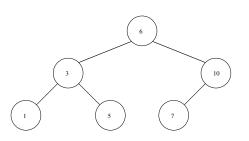
One binary search tree for a dictionary including elements with keys

Searching: An Example

Binary Search Tree Data Structure

Searching for 5:	<pre>public class BST<e comparable<e="" extends="">,V> { protected bstNode<e,v> root; protected class bstNode<e,v> { E key; V value; bstNode<e,v> left; bstNode<e,v> right; } } bstNode can also include a reference to its parent</e,v></e,v></e,v></e,v></e></pre>		
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 13/20 Binary Search Trees Searching A Recursive Search Algorithm	Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 14/20 Binary Search Trees Searching Analysis: Correctness and Running Time		
<pre>public V search(bstNode<e,v> T, E key) throws KeyNotFoundException { if (T == null) else if (key.compareTo(T.key) == 0) else if (key.compareTo(T.key) < 0)</e,v></pre>	Partial Correctness (tree of height <i>h</i>):		
else			

Minimum Finding: The Idea



Computer Science 331

Binary Search Trees Finding an Element with Minimal Key

A Recursive Minimum-Finding Algorithm

<pre>// Precondition: T is n // Postcondition: retun // null if T is empty</pre>	non-null rns node with minimal key	7,	
<pre>public bstNode<e,v> find if (T == null)</e,v></pre>	dMin(bstNode <e,v> T) {</e,v>		
else if (T.left == nul	11)		
else			
}			
Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #12	18 / 20
	Exercise		

Analysis: Correctness and Running Time

Partial Correctness (tree of height *h*):

• Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

- worst case running time is $\Theta(h)$ (and hence $\Theta(n)$)
- Proof: exercise

Idea:

Example:

Mike Jacobson (University of Calgary)

Think about how to do

Next lecture...

- insertion (hint: modify search)
- deletion (four separate cases need to be handled)

Key: inserting/deleting in such a way that the resulting tree still satisfies the BST property.

Lecture #12