
Computer Science 331
Queues

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #11

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 1 / 26

Outline

1 Definition

2 Applications

3 Implementations
Array-Based Implementation (Circular Queues)
List-Based Implementation

4 Generalizations
Double Ended Queues
Priority Queues

5 Queues in Java

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 2 / 26

Definition

The Queue ADT

A queue is a collection of objects that can be accessed in “first-in,
first-out” order: The only element that is visible and that can be
removed is the oldest remaining element.

Attributes:

size : The number of elements on the queue; size ≥ 0 at all times.

front : The first element of the queue. This refers to null, a
special value, if the queue is empty (that is, if size = 0)

rear: The position in the queue where the next element is to be
inserted, or a null value when the queue is empty.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 3 / 26

Definition

Definition of the Queue ADT (cont.)

Operations: (Java interface names: “offer,” “remove,” “poll”)

Queue(): Constructor; creates an empty queue

enqueue(T element): Inserts an element at the rear of the queue

dequeue(): Removes and returns the element at the front

peek(): Returns the element at the front of the queue without
removing it (leaving the queue unchanged)

size(): Returns the number of elements on the queue

isEmpty(): Reports whether the queue is empty

Note: Operations dequeue and peek each have the pre-condition that
the queue is nonempty and thrown an NoSuchElementException
exception if this condition is not satisfied when they are called.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 4 / 26



Definition

Implementation Using an Array

Initial Queue

h t
↓ ↓

Q: a b c d

Effect of Q.peek()

h t
↓ ↓

Q:

Output:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 5 / 26

Definition

Implementation Using an Array

Effect of Q.enqueue(e)

h t
↓ ↓

Q:

Output:

Effect of Q.dequeue()

h t
↓ ↓

Q:

Output:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 6 / 26

Definition

Implementation Using an Array

Effect of Q.dequeue()

h t
↓ ↓

Q:

Output:

Effect of Q.peek()

h t
↓ ↓

Q:

Output:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 7 / 26

Definition

Variation: Bounded Queues

These queues are created to have a maximum capacity (possibly
user-defined — so that two constructors are needed)

If the capacity would be exceeded when a new element is
enqueued then an enqueue operation throws a
FullQueueException exception and leaves the queue unchanged

Additional operations included a capacity() operation that
returns the capacity of the queue as well as an isFull() test

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 8 / 26



Applications

Types of Applications

Scheduling:

Examples: Print Queues and File Servers — In each case
requests are served on a first-come first-served basis, so that a
queue can be used to store the requests

Simulation:

Example: Modelling traffic in order to determine optimal traffic
lighting (to maximize car throughput)

Discrete Event Simulation is used to provide empirical estimates

Queues are used to store information about simulated cars
waiting at an intersection

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 9 / 26

Applications

Checking for Palindromes

Palindrome: Word or phrase whose letters are the same backwards
as forwards.

Examples:

Madam, I’m Adam.
Delia saw I was ailed.

See http://www.palindromelist.com for lots of examples.

Exercise: Design an algorithm that uses both a stack and a queue to
decide whether a string is a palindrome in linear time.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 10 / 26

Implementations Array-Based Implementation (Circular Queues)

Straightforward Array-Based Representation

Doesn’t work well! Problems:

If we try to keep the head element at position 0 then we must shift
the entire contents of the array over, every time there is a dequeue
operation

On the other hand, if we try to keep the rear element at position 0
then we must shift the entire contents of the array over, every time
there is an enqueue operation

Operations are too expensive, either way!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 11 / 26

Implementations Array-Based Implementation (Circular Queues)

A “Circular” Array

Solution: Allow both the position of the head and rear element to
move around, as needed.

head

tail

0

1

2

34

5

6

7

a

b

c
Q:

t h
↓ ↓

Q: d e ? ? ? a b c head=5, tail=1, size=5
0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 12 / 26

http://www.palindromelist.com


Implementations Array-Based Implementation (Circular Queues)

Example with Queue Operations

Initial Queue

h t
↓ ↓

Q: a b c ?
0 1 2 3

head = 0
tail = 2
size = 3

Q.enqueue(d)

Q:
0 1 2 3

head =
tail =
size =

Q.dequeue()

Q:
0 1 2 3

head =
tail =
size =

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 13 / 26

Implementations Array-Based Implementation (Circular Queues)

Example with Queue Operations (cont.)

Q.enqueue(e)

Q:
0 1 2 3

head =
tail =
size =

Q.dequeue()

Q:
0 1 2 3

head =
tail =
size =

Q.dequeue()

Q:
0 1 2 3

head =
tail =
size =

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 14 / 26

Implementations Array-Based Implementation (Circular Queues)

Example with Queue Operations (cont.)

Q.dequeue()

Q:
0 1 2 3

head =
tail =
size =

Q.dequeue()

Q:
0 1 2 3

head =
tail =
size =

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 15 / 26

Implementations Array-Based Implementation (Circular Queues)

Implementation of Queue Operations

public class CircularArrayQueue<T> {
private T[] queue;
private int head;
private int tail;
private int size;

public CircularArrayQueue()
{

public boolean isEmpty()
{

public T peek() {
if (isEmpty()) throw new NoSuchElementException;
return queue[head];

}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 16 / 26



Implementations Array-Based Implementation (Circular Queues)

Implementation of Queue Operations (cont.)

public T dequeue() {
if (isEmpty()) throw new NoSuchElementException;
T x = queue[head];

return x;
}
public enqueue(T x) {
if () {
T [] queueNew = (T[]) new Object[2*queue.length];
for (int i=0; i<queue.length-1; ++i)
queueNew[i] = queue[(head+i) % queue.length];

head = 0; tail = queue.length-1; queue = queueNew;
}
else

queue[tail] = x; ++size;
}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 17 / 26

Implementations List-Based Implementation

Implementation Using a Linked List

Singly-linked list representation:

head points to first element, tail points to last element

head tail

b c da

Operations:

dequeue: delete first element of list

enqueue(x): insert at tail of list

Why not have the tail point to the first element and the head point to
the last?

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 18 / 26

Implementations List-Based Implementation

Implementation Using a Linked List, Example

Effect of dequeue()

Pseudocode:

Effect of enqueue(x)

Pseudocode:

Cost:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 19 / 26

Implementations List-Based Implementation

Implementation of Queue Operations

public class LinkedListQueue<T> {
private class QueueNode<T> { similar to StackNode }

private QueueNode<T> head, tail;
private int size;

public LinkedListQueue() {
{

public boolean isEmpty() {

public T peek() {
if (isEmpty()) throw new NoSuchElementException();
return head.value;

}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 20 / 26



Implementations List-Based Implementation

Implementation of Queue Operations (cont.)

public void enqueue(T x) {
QueueNode<T> newNode = new QueueNode<T>(x,null);
if (isEmpty())

else

tail = newNode; ++size;
}

public T dequeue() {
if (isEmpty()) throw new NoSuchElementException();
T x = head.value; head = head.next;
if (head == null)

--size; return x;
}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 21 / 26

Implementations List-Based Implementation

Comparison of Array and List-Based Implementations

Array-based:

all operations almost always Θ(1)

enqueue is Θ(n) in the worst case (resizing the array)

good for bounded queues (and stacks) where worst case doesn’t
occur

List-based:

all operations Θ(1) in worst case

extra storage requirement (one reference per item)

good for large queues (and stacks) without a good upper bound
on size (resizing is expensive)

Choice of implementation to use depends on the application.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 22 / 26

Generalizations Double Ended Queues

Double Ended Queue — “Dequeue”

A “double ended queue (dequeue)” allows both operations on both
ends:

Operations:

addFront(x): Insert item x onto front

removeFront(): Remove and report value of front item

addRear(x): Append item x onto back

removeRear(): Remove and report value of rear item

Operations removeFront and removeRear should throw exceptions if
called when the dequeue is empty.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 23 / 26

Generalizations Double Ended Queues

Implementations

Circular array implementation — similar to that of a regular queue.

addFront, addRear cost Θ(n) in worst-case (due to resizing the
array), Θ(1) otherwise

all other operations Θ(1)

A doubly-linked list can also be used:

head tail

b c da

All operations in time Θ(1) (exercise)

Without a previous pointer, removeRear is Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 24 / 26



Generalizations Priority Queues

Priority Queues

A priority queue associates a priority as well as a value with each
element that is inserted.

The element with smallest priority is removed, instead of the oldest
element, when an element is to be deleted.

Priority Queues will be considered again we discuss algorithms for
sorting .

Also applicable for data compression (eg. Huffman encoding).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 25 / 26

Queues in Java

Queues in Java

Java Collections Framework:

includes a more general “Queue” interface and numerous classes
that implement this

Warning: The term “queue” is used in Java is used to describe a
much larger set of structures than is standard.

Queues in the Textbook:

Chapter 7 of the textbook includes additional details along with
two implementations — one that is an adaption of a List and
another that is an array-based implementation, built “from scratch”

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 26 / 26


	Definition
	Applications
	Implementations
	Array-Based Implementation (Circular Queues)
	List-Based Implementation

	Generalizations
	Double Ended Queues
	Priority Queues

	Queues in Java

