
Computer Science 331
Basic Data Structures

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #9

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 1 / 33

Outline

1 Objectives

2 Arrays
Static Arrays
Array Operations
Operations for Storage of Sets
Dynamic Arrays

3 Linked Lists
Simple Singly Linked Lists
Singly Linked Lists with Dummy Nodes
List Operations
Operations for Storage of Sets
Other Types of Lists

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 2 / 33

Objectives

Objectives for Today

Objectives for Today:

Review of several basic data structures, including types of arrays
and linked lists

Reference: Text, Chapter 4

Assumption: You have seen most of this already! Some
implementation and analysis details may be new.

Suggested Exercises for Later:

Write specifications of requirements for the various operations
being discussed

Write a few of the algorithms sketched here in more detail

Sketch proofs of correctness, and analyses of worst-case running
times, using techniques from class

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 3 / 33

Arrays Static Arrays

Static Array

A data structure providing access to a fixed number of data cells of
some type

Attribute — length : Number of data cells for which access is
provided; this — and the type of data to be stored in cells — must
be specified when the array is declared and cannot be changed

Data cells have unique integer indices between 0 and length − 1

The type of data that can be stored in each cell is called the base
type of the array

A data cell can be accessed at unit cost by specifying its index

Many programming languages, including Java, directly support
this data structure

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 4 / 33



Arrays Static Arrays

Example

Suppose A is the following array of String’s:

0 1 2 3 4 5
a c x g h null

Length of A: 6

Base Type of A: String

Current value of A[3]: g

Charge to access or store an entry of A at a given index: 1 unit

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 5 / 33

Arrays Array Operations

Automatic Initialization of an Array

An operation like

String[] sArray = new String[25];

declares the type of a variable (in this case, sArray — setting this to
be an array that stores String’s) and sets the length of the array (in
this case, 25)

Initial Value in Each Cell: The default value for the base type

Default Value for Numeric Types: 0

Default Value for char Type: \u0000 (Unicode value of 0)

Default Value for boolean Type: false

Default Value for Class Types: null

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 6 / 33

Arrays Array Operations

Initialization of an Array with Values

Initial values can be enclosed in braces, separated by commas

A.length automatically set to the number of initial values listed

Example: The statement

int[] age = { 2, 4, 7, 3, 6, 5 }

creates the following array

0 1 2 3 4 5
age: 2 4 7 3 6 5

Cost To Initialize an Array: Θ(n), where n = A.length

actual cost is some function f (n) = an + b (a, b constants)

f (n) ∈ Θ(n) (definition satisfied for cL = a, cU = a + b, and N0 = 1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 7 / 33

Arrays Array Operations

Traversal of an Array

Visiting some or all of the cells in an array. . .

Beginning at some index (usually 0)

Going in either direction (usually by increasing index)

Since arrays allow direct access, implementing traversals is
straightforward:

for (i=0; i<A.length; ++i) {
// process array entry A[i]

}

Worst-Case Cost for a Traversal: Θ(nT (n)), where T (n) is the
worst-case cost to process A[i]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 8 / 33



Arrays Array Operations

Special Case: Finding a Given Value

Strategy:

Traverse array from index 0

Compare each array element with the given value until it is found
or all entries have been checked

Return index if the value is found; throw an exception or return an
exceptional value (eg, −1) otherwise

Since at most a constant number of steps are used at each array
index, the worst-case cost is: Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 9 / 33

Arrays Array Operations

Replacing an Element of an Array (by position)

Replacing the Element at Position i

Given an index i and value v , replace contents at position i with v

How To Do This: A[i] = v

Error Conditions: i < 0 or i >= A.length

Worst-Case Cost: Θ(1)

actual cost is a function f (n) = c (c a constant)

c ∈ Θ(1) (definition satisfied by cL = c, cU = c, and N0 = 1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 10 / 33

Arrays Array Operations

Replacing an Element of an Array (by value)

Replacing One Value with Another

Given values v and w , replace w with v in the array, or report that
v was not found

How To Do This:

Find index i such that A[i] = w or report that w is not in the array.
Cost: Θ(n)

Set A[i] = v . Cost: Θ(1)

Error Conditions: none

Worst-Case Cost: Θ(n) (cost of the search function dominates)

f (n) = c1 + (c2n + c3) + c4 ∈ Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 11 / 33

Arrays Operations for Storage of Sets

Additional Operations for Storage of Sets

Suppose now that an array is used to store a set :

Elements of a set — and the values in the currently used part of
the array — are distinct

New attribute: numElements — size of the set currently stored

Requirements: numElements ≤ length and the set’s elements are
stored at positions 0, 1, . . . , numElements − 1

Default values for base type are stored at positions
numElements, numElements + 1, . . . , length − 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 12 / 33



Arrays Operations for Storage of Sets

Insertion of an Element into an Array

Operation: Given a value v , add v to the represented set

Error Conditions: numElements = length (array is already full)

Situations of Interest:

Storage order of elements in the array is unimportant and the new
element is guaranteed not to be in the set already

Storage order of elements in the array is unimportant but it is
possible that the “new” element is already in the set

Storage order of elements in the array is important

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 13 / 33

Arrays Operations for Storage of Sets

Insertion of an Element into an Array (Case 1)

If Storage Order is Unimportant and the New Element is
Guaranteed Not To Be in the Set:

How To Do This:

If numElements = A.length, report that A is full.

Otherwise, set A[numElements] = v and increment numElements.

Worst-Case Cost: Θ(1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 14 / 33

Arrays Operations for Storage of Sets

Insertion of an Element into an Array (Case 2)

If Storage Order is Unimportant But the Element Might Be in the
Set Already:

How To Do This:

If numElements = A.length, report that A is full. Cost: Θ(1)

If there exists an index i such that A[i] = v , report that v is already
in A. Cost: Θ(n)

Otherwise, set A[numElements] = v and increment numElements.
Cost: Θ(1)

Worst-Case Cost: Θ(n) (cost of the search dominates)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 15 / 33

Arrays Operations for Storage of Sets

Insertion of an Element into an Array (Case 3)

Insertion if Storage Order is Important:

How To Do This:

If numElements = A.length, report that A is full.

Otherwise, “shift” all elements from the insertion location “up” one
position in the array and copy the new element into its correct spot.

Worst-Case Cost: Θ(n) (inserting into location 0)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 16 / 33



Arrays Operations for Storage of Sets

Deletion of an Element from an Array

Operation: Given a value v , remove v from the represented set

Error Conditions: v is not in the array

Deletion if Storage Order is Unimportant:

Find index i such that A[i] = v or report that v is not in the array.

Set A[i] = A[numElements − 1]; decrement numElements − 1.

Worst-Case Cost: Θ(n) (Θ(1) to delete, but Θ(n) to find v )

Deletion if Storage Order is Important

Find index i such that A[i] = v or report that v is not in the array.

“Shift” all elements at index i + 1 to numElements − 1 one position
“down”; decrement numElements.

Worst-Case Cost: Θ(n) (deleting element 0)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 17 / 33

Arrays Dynamic Arrays

Dynamic Arrays

Lengths of dynamic arrays can be changed as needed

Java (and a few other languages) support dynamic arrays

Reasons To Use a Dynamic Array:

it may be difficult to derive a rigorous upper bound on the number
of elements that will be stored in the array,

extra memory is not available (or expensive), so allocating a large
static array with an excessive number of unused entries is not
feasible.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 18 / 33

Arrays Dynamic Arrays

Changing the Length of a Dynamic Array

To change the length of an array A to newLength (from the text):
1 Define an array temp with the same base type as A and with

length newLength.

2 Use System.arraycopy to copy the contents of A into temp.

3 Set A = temp.

Warning: This is fine if the base type is an elementary type (eg, int,
char or boolean). More work may be needed and, possibly,
System.arraycopy should not be used, if the base type is a class —
because it may not be obvious how the array elements should be
copied over in this case!

For More Information: Search for “deep copying versus shallow
copying” online.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 19 / 33

Arrays Dynamic Arrays

Changing Array Length When Representing a Set

Very Bad Idea: Resize the array every time the set size changes

This is a bad idea because:

too expensive — each operation costs Θ(n) due to the resizing

A Much Better Idea: Keep the array length linear in the set size.

Eg. Contract the array by one half if fewer than one-third of array
entries are used; double the array size when it fills up

This is better because:

amortized cost is Θ(1)

Why not contract if one-half of elements are used and double when
full?

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 20 / 33



Linked Lists Simple Singly Linked Lists

Linked Data Structures

Consist of zero or more nodes that are allocated as-needed and that
are connected via references or pointers

Advantage: Structures can grow as needed, unlike static arrays —
and at low cost, unlike dynamic arrays

Disadvantage: Constant-time direct access (by index or position)
is not supported

Reference: Sections 4.4-4.6 of the text includes an extensive
discussion including Java implementations

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 21 / 33

Linked Lists Simple Singly Linked Lists

Singly Linked Lists

Brief Description: Nodes are Linearly Connected — each has a value
and a reference to its successor node

Attributes:

head: Reference to the first node in the list

tail: Reference to the last node in the list (optional)

length: Number of nodes in the list

Example:

a c x g k

head tail

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 22 / 33

Linked Lists Singly Linked Lists with Dummy Nodes

Singly Linked Lists with Dummy Nodes

Singly Linked Lists with Dummy Nodes:

Variation: Nodes at head (and tail) do not store values — they are
placeholders

Motivation: Simplifies implementation of some operations

Example:

head tail

a c x g k

This variant, but without the tail node, is implemented in the textbook.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 23 / 33

Linked Lists List Operations

Initialization of a Linked List

How To Do This:

Allocate a dummy node for the tail (both value and successor set
to null).

Allocate a dummy node for the head (value set to null, successor
set to tail).

Set length to be 0.

Worst-Case Cost: Θ(1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 24 / 33



Linked Lists List Operations

Traversal of a Linked List

How To Do This:

Initialize a “cursor” to the head node’s successor.
While the cursor is not equal to the tail of the list.

Visit the node pointed to by the cursor.
Set cursor to its successor.

Worst-Case Cost: Θ(n) (constant number of operations done per
node)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 25 / 33

Linked Lists List Operations

Application: Finding a Given Element

Searching by Value:
How To Do This:

Traverse the list from the beginning; halt once the value being
searched for is found.

Worst-Case Cost: Θ(n) (worst-case requires traversing the entire
list)

Searching by Position:
How To Do This:

Traverse the list from the beginning; halt once the desired position
is reached.

Worst-Case Cost: Θ(n) (worst-case is searching for the last
element in the list)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 26 / 33

Linked Lists List Operations

Replacing an Element of a Singly Linked List

How To Do This:

Traverse the list from the beginning; halt once the value to be
replaced is found.

Overwrite the value stored in the current node with the new value.

Worst-Case Cost: Θ(n) (cost of finding the element to be replaced
dominates)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 27 / 33

Linked Lists Operations for Storage of Sets

Insertion of an Element (Case 1)

If Storage Order is Unimportant and the New Element is
Guaranteed Not To Be in Set:

How To Do This:

Create a new node whose value is the element to insert, and
whose successor is set to the successor of the head node.

Set the head node’s successor to the new node.

Worst-Case Cost: Θ(1) (constant number of steps)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 28 / 33



Linked Lists Operations for Storage of Sets

Insertion of an Element (Case 2)

If Storage Order is Unimportant But the Element Might Be in the
Set Already:

How To Do This:

Traverse the entire list to check whether the element is already in
the list. Cost: Θ(n)

If the element is not in the list, insert it at the head. Cost: Θ(1)

Worst-Case Cost: Θ(n) (dominated by the cost of the search)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 29 / 33

Linked Lists Operations for Storage of Sets

Insertion of an Element (Case 3)

If Storage Order is Important:

How To Do This:

Traverse the list from the beginning to find node (cursor) that
should come before the new node.

Set the new node’s successor field to the successor field of the
cursor.

Set the cursor’s successor field to the new node.

A Complication:

If the new node goes at the beginning of the list, it is inserted after
the (dummy) head node (no traversal required).

Worst-Case Cost: Θ(n) (inserting at the tail)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 30 / 33

Linked Lists Operations for Storage of Sets

Deletion of an Element

How To Do This:

Traverse the list from the beginning to locate the node to delete
(target) and its predecessor.

Set the predecessor’s successor node to the target’s successor
node (thus “unlinking” the node pointed to by target from the list).

Need the tail’s predecessor in addition to the tail itself in this case.

A Complication:

Don’t forget to set the target’s value field to null (to make sure
that the actual data is deleted)

Worst-Case Cost: Θ(n) (deleting the last element in the list)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 31 / 33

Linked Lists Other Types of Lists

Doubly Linked Lists

Variation: Nodes now have references to their predecessors as well
as their successors

head tail

a c x g k

Advantage:

Coding simplified (node’s predecessor easily found)

Disadvantages:

extra storage overhead for the additional predecessor references

more difficult to code

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 32 / 33



Linked Lists Other Types of Lists

Circular Lists

Variation over Doubly-Linked List: Replace pair of dummy nodes
with a single one

head

a c x g k

Advantage over Doubly Linked List:

slightly less extra storage (only one dummy node)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #9 33 / 33


	Objectives
	Arrays
	Static Arrays
	Array Operations
	Operations for Storage of Sets
	Dynamic Arrays

	Linked Lists
	Simple Singly Linked Lists
	Singly Linked Lists with Dummy Nodes
	List Operations
	Operations for Storage of Sets
	Other Types of Lists


