
Computer Science 331
Abstract Data Types, Interfaces, and the Java Collections Framework

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 1 / 17

Outline

1 Abstract Data Types and Interfaces
Abstract Data Types
Interfaces

2 Java Collections Framework
Introduction to the Java Collections Framework
Notes on the Use of Standard Libraries
More About This Course and The Textbook

3 Reading Assignment

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 2 / 17

Abstract Data Types and Interfaces Abstract Data Types

Abstract Data Types

Recall that a data type is defined by

(a set of possible) data values and their representations

operations defined on the data values and the implementations of
these operations as executable statements

A specification of requirements for a data type is given by an abstract
data type (ADT)

An implementation of a data type is given by a data structure

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 3 / 17

Abstract Data Types and Interfaces Abstract Data Types

Specifying an Abstract Data Type

A specification of an ADT includes the following components :

ADT Name: The name of the ADT

ADT Description: Brief description (ideally written in simple
English) of the ADT’s characteristics and purpose
ADT Invariants: Conditions that must be satisfied

immediately after all ADT constructors have terminated
immediately before all other ADT operations begin execution and
immediately after these operations have terminated

Note that these conditions are not necessarily satisfied during the
execution of ADT operations
These are also called class invariants in OOP literature

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 4 / 17



Abstract Data Types and Interfaces Abstract Data Types

Specifying an Abstract Data Type (cont.)

Additional ADT Components:

ADT Attributes: Pieces of information that must be available in
order for the ADT to work properly (and are maintained by
instances of the data type specified by the ADT)

ADT Operations: Specifications of procedures that define the
behaviour of the ADT and its interface with the rest of the system

These are more formal than described in your textbook. In this course,
we will primarily consider Name, Description, and Operations.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 5 / 17

Abstract Data Types and Interfaces Abstract Data Types

Example: List

A List is a collection of data that supports the following operations:

return the size of the list

return i th element in the list

determine whether a data item is in the list

etc... See Ch.4 of the textbook for more details.

Some data structures that can be used to implement the List ADT are:

static array (data items allocated together in memory, accessed by
indexing)

dynamic array (resizes itself as neccessary) — see ArrayList
class

linked list (exactly one entry per item, chained together via
references) — see LinkedList class

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 6 / 17

Abstract Data Types and Interfaces Interfaces

Interfaces

In Java, an interface is . . .

an extreme case of an “abstract class:” An interface can define
constants (i.e., “class variables”) and abstract methods , but it
cannot include any instance variables or implemented methods

used to represent an abstract data type

A class implements an interface:

use the implements clause with a class to show that your class
provides an interface’s methods (checked by the compiler)

used to represent a particular data structure

Section 1.3 includes a simple example of an interface. Later chapters
include considerably more complicated (and useful) examples

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 7 / 17

Abstract Data Types and Interfaces Interfaces

More About Interfaces

Other abstract and concrete classes that “implement” the interface
must provide the operations specified by the interface with exactly the
same syntax

Note: It is customary, and useful, to include comments that specify the
“semantics” of the operations (giving their requirements in more detail)
as part of an implementation — but these details are not checked by
Java!

It is possible for a class to implement more than one interface; this is
Java’s (only) support for multiple inheritance

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 8 / 17



Abstract Data Types and Interfaces Interfaces

Example: Using the List Interface

Suppose we have two classes that implement List:

public class LinkedList<T> implements List<T> {...}
public class ArrayList<T> implements List<T> {...}

We can declare references of type List<T>

separates implementation of List from its ADT definition
(implementation is almost completely transparent)

Example (instance of List using a linked list implementation):

List<Integer> L = new LinkedList<Integer>();
Integer x = new Integer(5);
L.add(x);

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 9 / 17

Abstract Data Types and Interfaces Interfaces

Generics in Java

Recent versions of Java permit data structures of a generic type. For
example:

List<T> denotes a list whose elements are all of some reference
type T (i.e. only classes, no primitive types)

the statement List<Integer> L declares L to be a reference to a
list of Integerss.

Generics facilitate code re-use (eg. don’t need separate
implementations for lists of strings and lists of integers).

More information in the text (eg. Section 4.1)

We will use generics in this course by necessity, especially when
working with the Java Collections package, but will try to keep this
to a minimum.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 10 / 17

Java Collections Framework Introduction to the Java Collections Framework

Collection Frameworks

A collections framework is a software architecture consisting of the
following

A hierarchy of interfaces that define various kinds of collections
and specify how they are related

A set of abstract classes that provide partial implementations of
the interfaces and serve as the foundation for constructing
concrete classes

A set of concrete classes based on different underlying data
structures that offer different runtime characteristics

A set of algorithms that work with these

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 11 / 17

Java Collections Framework Introduction to the Java Collections Framework

Java Collections Framework

The Java Collections Framework provides implementations for a
number of common collections, including lists, maps, sets and vectors.
It currently includes the following hierarchy of interfaces

Additional information about this can be found in Section 4.8 of the
textbook. Considerably more information is available online.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 12 / 17



Java Collections Framework Notes on the Use of Standard Libraries

Ways To Use Standard Libraries Like the JCF

One Approach: Build Everything From Scratch . . .

In other words, don’t use the libraries at all!

Advantage: You don’t have to depend on someone else’s
implementation of something that you use

Disadvantage: Development is more time-consuming, expensive,
and, potentially, error-prone

Analogy: Building a house by fabricating everything that you
need instead of purchasing standard materials off-the-shelf

Older data structures textbooks focus almost entirely on this
approach, because useful “standard libraries” were not available
when they were written!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 13 / 17

Java Collections Framework Notes on the Use of Standard Libraries

A Second Approach

Use Libraries in a Limited Way

In particular, understand what the libraries provide and make use
of this in a straightforward way . . .

. . . without trying to provide additional interfaces, abstract classes,
and concrete classes that extend the library

Advantage: The current project is likely completed more
efficiently and reliably than using the first approach, provided that
the library is already well-suited to it

Another Advantage: Design and coding is (still) reasonably
straightforward

Disadvantage: You lose the ability to customize and extend the
library in a way that simplifies development of your own future
projects

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 14 / 17

Java Collections Framework Notes on the Use of Standard Libraries

A Third Approach

Use and Extend These Libraries

Build components that will likely be of use in future projects

Implement and test these in a way that facilitates reuse. . . for
example, planning for the likelihood that inheritance hierarchies
will be extended in ways you do not know about

Potential Advantage: The library will gradually become more
suitable for your application area

Potential Advantage: Future projects will be completed more
efficiently and reliably than would otherwise be possible

Disadvantage: Implementation and testing (of the components to
be added to the library) can be considerably more complicated
than would otherwise be the case!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 15 / 17

Java Collections Framework More About This Course and The Textbook

Expectations for This Course

You will be able to “build from scratch,” and you will occasionally be
asked to do so on assignments and tests, because

this is a very effective way to learn about the data structures that
are being discussed, and

programming tasks that are involved with this will reappear (in
more complex forms) in the future, anyway!

You will be able to make (limited) use of standard libraries without
necessarily being able to extend them, because

You should get into the habit of using these libraries instead of
“re-inventing the wheel” as soon as possible

You will discover (very quickly) that you simply do not have time to
solve the problems and design the software that you need to if you
try to build everything from scratch

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 16 / 17



Reading Assignment

Reading Assignment

Please read the following. You may ask questions about this material
in tutorials.

Read Chapter 1 if you have not already done so! Virtually
everything here will, eventually, be needed in this course.

Read Chapter 4 In addition to the descriptions of the List ADT and
various implementations, it is worthwhile to the know the
information about the “Collection” interface (Section 4.8), and
about iterators (Section 4.5)

Note: Lectures, after a discussion of the basic list data types, will
continue with a discussion of stacks , which are discussed in
Chapter 5. However, you need to know a little bit about the “List”
interface in order to make sense of the material in this chapter of the
book.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 17 / 17


	Abstract Data Types and Interfaces
	Abstract Data Types
	Interfaces

	Java Collections Framework
	Introduction to the Java Collections Framework
	Notes on the Use of Standard Libraries
	More About This Course and The Textbook

	Reading Assignment

