Outline

Computer Science 331
 Asymptotic Notation

Mike Jacobson
Department of Computer Science
University of Calgary
Lecture \#7

Properties and ApplicationTypes of Asymptotic Notation

- Big-Oh Notation
- Big-Omega Notation
- Big-Theta Notation
- Little-oh Notation
- Little-omega NotationUseful Properties and FunctionsRecommended Reading

Asymptotic Notation ...

- provides information about the relative rates of growth of a pair of functions (of a single integer or real variable)
- ignores or hides other details, including
- behaviour on small inputs - results are most meaningful when inputs are extremely large
- multiplicative constants and lower-order terms - which can be implementation or platform-dependent anyway
- permits classification of algorithms into classes (eg. linear, quadratic, polynomial, exponential, etc...)
- is useful for giving the kinds of bounds on running times of algorithms that we will study in this course

Suppose $f, g: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$.
$f \in O(g):$
There exist constants $c>0$ and $N_{0} \geq 0$ such that

$$
f(n) \leq c \cdot g(n)
$$

for all $n \geq N_{0}$.
Intuition:

- growth rate of f is at most (same as or less than) that of g
- Eg. $4 n+3 \in O(n)$ - definition is satisfied using $c=5$ and $N_{0}=3$

Suppose $f, g: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$.
$f \in \Omega(g)$
There exist constants $c>0$ and $N_{0} \geq 0$ such that

$$
f(n) \geq c \cdot g(n)
$$

for all $n \geq N_{0}$.
Intuition:

- growth rate of f is at least (the same as or greater than) that of g
- $4 n+3 \in \Omega(n)$ - definition is satisfied using $c=N_{0}=1$

Theorem 1
 ``` 4n

\mp@subsup{n}{}{2}+2\inO(\mp@subsup{n}{}{2}```}

\section*{Proof.}

Let \(f(n)=4 n^{2}+2\) and \(g(n)=n^{2}\). Then:
- \(f(n)=4 n^{2}+2 \leq 4 n^{2}+n^{2}=5 n^{2}\) whenever \(n^{2} \geq 2\)
- \(n^{2} \geq 2\) holds if \(n \geq \sqrt{2} \approx 1.414\)
- \(f(n) \leq c g(n)\) for all \(n \geq N_{0}\) when \(c=5\) and \(N_{0}=2\).

By definition, \(f \in O(g)\) as claimed.

\section*{Transpose Symmetry}

\section*{Big-Theta Notation}

\section*{Theorem 2}

Suppose \(f, g: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}\). Then \(f \in O(g)\) if and only if \(g \in \Omega(f)\).

\section*{Proof.}

If \(f \in O(g)\) :
- by defn \(\exists c \in \mathbb{R}^{>0}\) and \(N_{0} \in \mathbb{R}^{\geq 0}\) such that \(f(n) \leq c g(n)\) for all \(n \geq N_{0}\).
- implies \(c g(n) \geq f(n)\) for all \(n \geq N_{0}\)
- implies \(g(n) \geq(1 / c) f(n)\) for all \(n \geq N_{0}\)
- thus \(g \in \Omega(f)\) by definition

If \(g \in \Omega(f), \ldots\)

\section*{An Equivalent Definition}

Suppose \(f, g: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}\).
\(f \in O(g):\)
For every constant \(c>0\) there exists a constant \(N_{0} \geq 0\) such that
\[
f(n) \leq c \cdot g(n)
\]
for all \(n \geq N_{0}\)

\section*{Intuition:}
- \(f\) grows strictly slower than \(g\)

Types of Asymptotic Notation Little-omega Notation
Little-omega Notation

Suppose \(f, g: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}\).
\(f \in \omega(g)\)
For every constant \(c>0\) there exists a constant \(N_{0} \geq 0\) such that
\[
f(n) \geq c \cdot g(n)
\]
for all \(n \geq N_{0}\).

Intuition:
- \(f\) grows strictly faster than \(g\)

\section*{Useful Properties}

Suppose \(f, g: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}\).

\section*{Useful properties:}
- \(f \in O(g) \Rightarrow f \in O(g)\)
- \(f \in \omega(g) \Rightarrow f \in \Omega(g)\)
- Transpose Symmetry:
\[
f \in o(g) \Longleftrightarrow g \in \omega(f)
\]
- Limit Test
\[
f \in o(g) \Longleftrightarrow \lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=0
\]
- Limit Test
\[
f \in \omega(g) \Longleftrightarrow \lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=+\infty
\]

\section*{Recommended Reading}

\section*{Especially Useful in Introduction to Algorithms:}
- Additional Properties and Exercises (pp. 49-50)
- Standard Notation and Common Functions (Section 3.2):
- Floors and Ceilings
- Modular Arithmetic
- Standard Functions: Polynomials, Exponentials, Logarithms, and Their Properties

Please read Section 2.8 of the textbook.

Chapter 3 of Cormen, Leiserson, Rivest and Stein's Introduction to Algorithms is also highly recommended.

Polynomial (degree d): \(p(n)=a_{d} n^{d}+a_{d-1} n^{d-1}+\cdots+a_{1} n+a_{0}\) - \(p(n) \in \Theta\left(n^{d}\right)\)

Exponentials: \(a^{n}, a \in \mathbb{R}^{\geq 0}\) (increasing if \(a>1\))
- if \(a>1\), then \(a^{n} \in \omega(p(n))\) for every polynomial \(p(n)\)

Logarithms: \(\log _{a} n, a \in \mathbb{R} \geq 0\)
- \(\left(\log _{a} n\right)^{k} \in o(p(n))\) whenever \(a>1, k \in \mathbb{R}^{\geq 0}\), and \(p(n)\) is a polynomial with degree at least one```

