Computer Science 331

Asymptotic Notation

Mike Jacobson

Department of Computer Science University of Calgary

Lecture #7

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #7

Lecture #7

Properties and Application

Properties and Application

Asymptotic Notation ...

- provides information about the *relative rates of growth* of a pair of functions (of a single integer or real variable)
- ignores or hides other details, including
 - behaviour on *small* inputs results are most meaningful when inputs are extremely large
 - multiplicative constants and lower-order terms which can be implementation or platform-dependent anyway
- permits classification of algorithms into classes (eg. linear, quadratic, polynomial, exponential, etc...)
- is useful for giving the kinds of bounds on running times of algorithms that we will study in this course

Outline

- **Properties and Application**
- Types of Asymptotic Notation
 - Big-Oh Notation
 - Big-Omega Notation
 - Big-Theta Notation
 - Little-oh Notation
 - Little-omega Notation
- **Useful Properties and Functions**
- Recommended Reading

Mike Jacobson (University of Calgary)

Computer Science 331

Types of Asymptotic Notation

Big-Oh Notation

Suppose $f, g : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$.

 $f \in O(g)$:

There exist constants c > 0 and $N_0 \ge 0$ such that

$$f(n) \leq c \cdot g(n)$$

for all $n > N_0$.

Intuition:

- growth rate of f is at most (same as or less than) that of g
- Eg. $4n+3 \in O(n)$ definition is satisfied using c=5 and $N_0=3$

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #7

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #7

Types of Asymptotic Notation

Types of Asymptotic Notation

Example: $4n^2 + 2 \in O(n^2)$

Mike Jacobson (University of Calgary)

Computer Science 331

Proof that $4n^2 + 2 \in O(n^2)$

Theorem 1

$$4n^2 + 2 \in O(n^2)$$

Proof.

Let $f(n) = 4n^2 + 2$ and $g(n) = n^2$. Then:

- $f(n) = 4n^2 + 2 \le 4n^2 + n^2 = 5n^2$ whenever $n^2 \ge 2$
- $n^2 > 2$ holds if $n \ge \sqrt{2} \approx 1.414$
- f(n) < cq(n) for all $n > N_0$ when c = 5 and $N_0 = 2$.

By definition, $f \in O(g)$ as claimed.

Mike Jacobson (University of Calgary)

Types of Asymptotic Notation

Big-Omega Notation

Suppose $f, g : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$.

 $f \in \Omega(g)$:

There exist constants c > 0 and $N_0 \ge 0$ such that

 $f(n) \geq c \cdot g(n)$

for all $n \geq N_0$.

Intuition:

- growth rate of f is at least (the same as or greater than) that of g
- $4n + 3 \in \Omega(n)$ definition is satisfied using $c = N_0 = 1$

Example: $n^2 \in \Omega(4n^2 + 2)$

Types of Asymptotic Notation

Transpose Symmetry

Theorem 2

Suppose $f, g : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$. Then $f \in O(g)$ if and only if $g \in \Omega(f)$.

Proof.

If $f \in O(g)$:

- by defn $\exists c \in \mathbb{R}^{>0}$ and $N_0 \in \mathbb{R}^{\geq 0}$ such that $f(n) \leq cg(n)$ for all $n > N_0$.
- implies $cg(n) \ge f(n)$ for all $n \ge N_0$
- implies $g(n) \ge (1/c)f(n)$ for all $n \ge N_0$
- thus $g \in \Omega(f)$ by definition

If $g \in \Omega(f), \ldots$

Mike Jacobson (University of Calgary)

Example: $4n^2 + 2 \in \Theta(n^2)$

Big-Theta Notation

Suppose $f, g : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$.

 $f \in \Theta(g)$:

There exist constants $c_L, c_U > 0$ and $N_0 \ge 0$ such that

$$c_L g(n) \leq f(n) \leq c_U \cdot g(n)$$

for all $n \geq N_0$.

Intuition:

- f has the same growth rate as g
- $4n + 3 \in \Theta(n)$ definition is satisfied using $c_L = 1$, $c_U = 5$, $N_0 = 3$

Mike Jacobson (University of Calgary)

Types of Asymptotic Notation

An Equivalent Definition

Theorem 3

Suppose $f, g : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$. Then $f \in \Theta(g)$ if and only if

 $f \in O(g)$ and $f \in \Omega(g)$

Exercise: Prove that the two definitions of " $f \in \Theta(g)$ " are *equivalent*.

How To Solve This:

• Work from the definitions, as in previous example!

Little-oh Notation

Suppose $f, g : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$.

 $f \in o(g)$:

For every constant c > 0 there exists a constant $N_0 \ge 0$ such that

$$f(n) \leq c \cdot g(n)$$

for all $n \geq N_0$.

Intuition:

f grows strictly slower than g

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #7

13 / 19

Mike Jacobson (University of Calgary)

Computer Science 331

Types of Asymptotic Notation

Little-omega Notation

Suppose $f, g : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$.

 $f \in \omega(g)$:

For every constant c > 0 there exists a constant $N_0 \ge 0$ such that

 $f(n) \geq c \cdot g(n)$

for all $n \geq N_0$.

Intuition:

f grows strictly faster than g

Example: $x \in o(x^2)$

Types of Asymptotic Notation

Little-omega Notation

Example: $x \in \omega(\sqrt{x})$

Useful Properties

Suppose $f, q : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$.

Useful properties:

- $f \in O(g) \Rightarrow f \in O(g)$
- $f \in \omega(q) \Rightarrow f \in \Omega(q)$
- Transpose Symmetry:

$$f \in o(g) \Longleftrightarrow g \in \omega(f)$$

Limit Test:

$$f \in o(g) \Longleftrightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0$$

• Limit Test:

$$f \in \omega(g) \Longleftrightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = +\infty$$

Mike Jacobson (University of Calgary)

Computer Science 331

17 / 19

Computer Science 331

Lecture #7

Recommended Reading

Recommended Reading

Please read **Section 2.8** of the textbook.

Chapter 3 of Cormen, Leiserson, Rivest and Stein's Introduction to Algorithms is also highly recommended.

Especially Useful in *Introduction to Algorithms*:

- Additional Properties and Exercises (pp. 49–50)
- Standard Notation and Common Functions (Section 3.2):
 - Floors and Ceilings
 - Modular Arithmetic
 - Standard Functions: Polynomials, Exponentials, Logarithms, and Their Properties

Some Standard Functions

Polynomial (degree *d*): $p(n) = a_d n^d + a_{d-1} n^{d-1} + \cdots + a_1 n + a_0$

•
$$p(n) \in \Theta(n^d)$$

Exponentials: a^n , $a \in \mathbb{R}^{\geq 0}$ (increasing if a > 1)

• if a > 1, then $a^n \in \omega(p(n))$ for every polynomial p(n)

Logarithms: $\log_a n$, $a \in \mathbb{R}^{\geq 0}$

• $(\log_a n)^k \in o(p(n))$ whenever a > 1, $k \in \mathbb{R}^{\geq 0}$, and p(n) is a polynomial with degree at least one

Mike Jacobson (University of Calgary)