
Computer Science 331
Getting from Pseudocode to a Bound on Running Time

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #6

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 1 / 18

Outline

1 Objective and Strategy

2 Running Time for Various Kinds of Programs
A Single Statement
A Sequence of Subprograms
A Conditional Statement
A Loop
A Nested Loop
A Simple Recursive Program

3 Additional References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 2 / 18

Objective and Strategy

Objective and Strategy

Objective: use code (or pseudocode) to estimate the worst-case
running time of a program (or algorithm).

Useful Values:

Worst-case running time (exact)

Upper and lower bounds on worst-case running time

Strategy: consider subprograms . . .

beginning with individual statements . . .

then considering progressively larger subprograms . . .

until the whole program has been considered.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 3 / 18

Running Time for Various Kinds of Programs A Single Statement

Case: Program is a Single Statement

Example: x := 1

Amount to charge:

1 unit

Use this charge for:

a single arithmetic or Boolean operation

a comparison

an assignment of a value to a variable

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 4 / 18

Running Time for Various Kinds of Programs A Single Statement

Another Example

Example: x := y := 1

Amount to charge:

2 units (one per assignment)

Comments:

be careful with compound statements

one line does not always equal one unit!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 5 / 18

Running Time for Various Kinds of Programs A Sequence of Subprograms

Case: Program is a Sequence of Subprograms

Structure to Consider: S1; S2

Worst-Case Running Time: If

worst-case running time of S1 is T1, and

worst-case running time of S2 is T2,

then

worst-case running time of entire program is at most: T1 + T2

Explanation:

S1 and S2 are executed sequentially, so runtime is the sum of
each of their runtimes

T1 and T2 are upper bounds on the runtimes of S1 and S2, so
T1 + T2 is an upper bound on the total runtime

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 6 / 18

Running Time for Various Kinds of Programs A Conditional Statement

Case: Program is a Conditional Statement

Structure to Consider:
if P then

S1

else
S2

end if

Worst-Case Running Time: if

worst-case running time of S1 is T1, and

worst-case running time of S2 is T2,

then

worst-case running time of program is:
max(T1, T2)+ cost of evaluating P

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 7 / 18

Running Time for Various Kinds of Programs A Loop

Case: Program is a Loop

Structure to Consider:
while P do

S
end while

We need to know:

the worst-case cost to evaluate P

the worst-case cost to execute S

the maximum number of executions of the loop body

Problem:

it is not even clear that this will halt!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 8 / 18

Running Time for Various Kinds of Programs A Loop

First Objective: Counting Executions of the Loop Body

Recall that a Loop Variant is an integer-valued function f of variables
such that

the value of f decreases by at least 1 each time loop body is
executed;

the test P is false if the value of f is ≤ 0

The existence of a loop variant implies that the loop terminates if each
evaluation of P and each execution of the loop body terminates.

Useful fact:

Executions ≤ f evaluated at the initial values of its variables

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 9 / 18

Running Time for Various Kinds of Programs A Loop

Next Objective: Bounding Total Running Time

Suppose:

Loop body is executed at most k times

Worst-case cost for each evaluation of the loop test P is ≤ T1

Worst-case cost for each execution of the loop body S is ≤ T2

Then:

Total cost for all executions of test P is at most: (k + 1)T1

Total cost for all executions of loop body is at most: kT2

Therefore, the total cost to execute the loop is at most:
(k + 1)T1 + kT2

If cost of j th iteration of S is T2(j) : (k + 1)T1 +
k∑

j=0

T2(j)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 10 / 18

Running Time for Various Kinds of Programs A Loop

Example

Suppose A is an integer array with length n, key is an integer, and the
following code is executed.

i := 0
while ((i < n) and (A[i] <> key)) do

i := i + 1
end while

Loop Variant for this program’s loop: f (n, i) = n − i

i increases after each iteration, so f (n, i) decreases

f (n, i) ≤ 0 if i ≥ n and the loop terminates if i ≥ n

What about 2nd condition in test? ignore (doesn’t affect worst case)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 11 / 18

Running Time for Various Kinds of Programs A Loop

Example, Continued

Maximum number of executions of the loop body:

f (n, 0) = n − 0 = n

Worst-case cost to evaluate test:

3 units (two comparisons, one Boolean operation)

Worst-case cost for an execution of the loop body:

2 units (one addition, one assignment)

Upper bound on worst-case cost to execute the loop:

3(n + 1) + 2n = 5n + 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 12 / 18

Running Time for Various Kinds of Programs A Nested Loop

Case: Program is a Nested Loop

Structure to Consider:
while P1 do

while P2 do
S

end while
end while

Method:

compute worst-case cost of inner loop as above

compute cost of outer loop using computed inner loop cost as the
worst-case cost of the outer loop’s body

An example will be covered in next week’s labs.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 13 / 18

Running Time for Various Kinds of Programs A Simple Recursive Program

Case: Program Calls Itself a Constant Number of
Times

Example: Fibonacci Number Program
public int fib (int n)
if n == 0 then

return 0
else if n == 1 then

return 1
else

return fib(n − 1) + fib(n − 2)
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 14 / 18

Running Time for Various Kinds of Programs A Simple Recursive Program

Objective: Writing an Expression for the Running Time

Let T (n) be the number of steps used on input n. Then

T (n) ≤

2 if n = 0,

3 if n = 1,

6 + T (n − 1) + T (n − 2) if n ≥ 2.

This is an example of a recurrence relation:

T (n) expressed using the same function T evaluated at smaller
inputs

Explicit (non-recursive) values of T given for small inputs n (base
cases)

T (2) ≤ 6 + T (1) + T (0) = 11, T (3) ≤ 6 + T (2) + T (1) = 20, etc...

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 15 / 18

Running Time for Various Kinds of Programs A Simple Recursive Program

Analysis of Recursive Programs

Students who have already completed MATH 271 should be able to
solve these problems now. Students in MATH 271 should be able to do
so after studying mathematical induction.

Exercises:
1 Use the above information to prove that

T (n) ≤ 6× 2n − 4

for every integer n ≥ 0.

2 Use the above information to prove that

T (n) ≤ 6× fib(n + 1)− 4

for every integer n ≥ 0.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 16 / 18

Running Time for Various Kinds of Programs A Simple Recursive Program

Wait a Minute . . .

Question:
How do you establish correctness of a simple recursive program?

Exercise (For Between Now and Next Class):
Try to think of a “proof rule” that could be used to establish partial
correctness of a function like the one given above.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 17 / 18

Additional References

Additional References

Proving That a Given Bound on Worst-Case Running Time is
Correct:

See the discussion of mathematical induction in your MATH 271
textbook!

Finding a Bound on Worst-Case Running Time:

Cormen, Leiserson, Rivest and Stein
Introduction to Algorithms, Second Edition

Appendix A (Summations): For analysis of loops
Chapter 4 (Recurrences): For analysis of recursive procedures

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #6 18 / 18

	Objective and Strategy
	Running Time for Various Kinds of Programs
	A Single Statement
	A Sequence of Subprograms
	A Conditional Statement
	A Loop
	A Nested Loop
	A Simple Recursive Program

	Additional References

