

Objective

Measuring Efficiency

What sorts of measures could we use? The following are all equally valid:

- Running Time no one wants to wait too long for programs to execute
- Memory Used by Data (Storage Space) time is (sort of) unconstrained, but any computer can run out of memory
- Memory Used by Code an issue if a program is to be stored on a low-memory device (like a smart card)
- Time to Code —- programmers must be paid and software development usually has deadlines!

Our focus will be on running time and storage space.

Objective

How Do We Measure Efficiency?

How can we compare algorithms or programs?

Run the Code and Time the Execution.

Problem: Execution time is influenced by many factors:

- Hardware (How fast is the CPU? How many of them?)
- Compiler and System Software: (Which OS?)
- *Simultaneous User Activity:* (Potentially affected by the time of day when the program was executed)
- Choice of Input Data: (Running times can vary on inputs, even inputs of the same "size")
- Programmer's Skill

Analyze the Code

Advantage: Only influenced by choice of data Disadvantage: Can be quite difficult!

We typically try to do both (analysis supported by execution timings).

Objective

What Will We Measure?

Most of the time, in this course, running time and storage space will be measured in an abstract *machine-independent* way.

Running Time:

- Number of primitive operations or "steps" (programming language statements) used
- Ignores: different costs between operations (eg. multiply vs. add)

Storage Space:

Vike Jacobson (University of Calgary)

- Number of words of machine memory used, assuming each word can store the same (fixed) number of bits
- Ignores: memory hierarchy differences, eg. cache vs. main memory

Computer Science 331

Lecture #5

5/10

Lecture #5 8 / 10

Lecture #5

6/10

Types of Analysis

How Do We Wish To Measure Resources?

We will try to measure the amount of resources (time or space) used as a function of the "input size."

As described in the textbook and in this course, this will be dependent on type of input considered.

Example: if the input is an array, the appropriate measure of input size is (usually):

number of elements

Mike Jacobson (University of Calgary)

Example: if the input is a single integer, which can be virtually as large as we want, the appropriate measure of input size is:

Computer Science 331

• the bit-length of the integer

Average-Case Analysis

Types of Analysis

Worst-Case Analysis

Consider the *maximal* amount of resources (such as *longest* running time) used by the algorithm, on any input of a given size

Advantages of This Type of Analysis:

- upper bound on running time (guarantee that the algorithm will not take any longer)
- for some algorithms, worst-case occurs fairly often (eg. searching an array for an element not in it)

Disadvantage of This Type of Analysis:

• for some cases, the worst case rarely occurs (eg. array in reverse order is the worst case for one variation of quicksort)

Consider the **average** amount of resources (such as **average** running time) used by the algorithm, for an input of a given size

Advantage of This Type of Analysis:

captures resource consumption for typical inputs

Types of Analysis

Disadvantages of This Type of Analysis:

- may be difficult to determine what the average case actually is
- typically requires probabilistic analysis

In some, but not all, cases, the worst-case and average-case running times (or amount of storage space used) are approximately the same.

Types of Analysis

Other Kinds of Analysis

Best-case Analysis:

- Consider the *minimal* amount of resources (such as *shortest* running time) used by the algorithm, on any input of a given size
- Eg. sorted array input to insertion sort

Amortized Analysis:

- time required to perform a sequence of operations is averaged over all operations performed
- different from average case guarantees average performance per operation in the worst case
- Eg. if T(n) is the worst case cost to perform n operations, then T(n)/n is the amortized (average) cost per operation

Computer Science 331

Lecture #5 9 / 10

Mike Jacobson (University of Calgary) Computer Science 331

Further Reading

Textbook, Section 2.8

• also includes material covered in classes later this week

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, *Introduction to Algorithms*, Second Edition

Lecture #5

10/10

- on reserve in the library (and free online)
- includes much more material about this topic