
Computer Science 331
Proofs of Correctness of Algorithms

Mike Jacobson

Department of Computer Science
University of Calgary

Lectures #3–4

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 1 / 21

Outline

1 Definition and Motivation
Definition
Motivation

2 Parts of a Proof
Partial Correctness
Termination

3 Strategy and Examples
Strategy
Important Cases

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 2 / 21

Definition and Motivation Definition

What is a Proof of Correctness?

Concerns both a requirements specification, including a
pre-condition P and post-condition Q, and an algorithm or program S

Specifically, this is a proof that if

inputs satisfy the pre-condition P, and

algorithm or program S is executed,

then

S eventually halts, and its inputs and outputs satisfy the
post-condition Q

Generally expected to be a formal mathematical proof establishing
“correctness” of pseudocode (or code) as defined above.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 3 / 21

Definition and Motivation Motivation

Why Prove Correctness?

Testing is not always sufficient:

testing cannot prove correctness

testing can detect errors, but is not guaranteed to find them

when computer time is expensive, proving correctness can be
cheaper than testing

in safety-critical situations, proving correctness may be required

On the other hand: testing is often feasible when a proof of
correctness is not, and “errors in proofs” can be missed, too!

Used to prove correctness of algorithms.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 4 / 21



Parts of a Proof Partial Correctness

One Part of a Proof: Partial Correctness

If

inputs satisfy the precondition P, and

algorithm or program S is executed,

then either

S halts and outputs satisfy the postcondition Q

or

S does not halt

Generally written as {P} S {Q}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 5 / 21

Parts of a Proof Termination

Another Part of a Proof: Termination

If

inputs satisfy the precondition P, and

algorithm or program S is executed,

then

S is guaranteed to halt (terminate)

Partial correctness and termination are often (but not always)
considered separately because:

Different — independent — arguments are used for each

Sometimes one condition holds, but not the other! Then the
algorithm is not correct, but something interesting can still be
established (eg. testing non-existence conjecture).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 6 / 21

Strategy and Examples Strategy

Strategy

Proving Correctness

If partial correctness and termination of S has been proved then
correctness of S has been proved too.

Proving Partial Correctness and Termination
There are several different kinds of programs:

simple statements, including assignment statements

sequences of subprograms

conditional statements

loops

There are different proof strategies for each.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 7 / 21

Strategy and Examples Important Cases

Assignment Statement Initializes a Variable

Claim:

{x = 1} y := x + 1 {x = 1 and y = 2}

General Rule:

{x = 1} is the precondition

{x = 1 and y = 2} is the postcondition

simple argument for proof — statement sets y to x + 1 and leaves
x unchanged

Termination: obvious (remember, we are not proving correctness of
the runtime environment)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 8 / 21



Strategy and Examples Important Cases

Assignment Changes a Variable’s Value

Claim:

{xold = 1} x := x + 1 {xnew = 2}

General Rule:

programs are not static — variables change value as the program
executes

need subscripts to distinguish between value of x before and after
the statement

Termination: obvious

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 9 / 21

Strategy and Examples Important Cases

Program is a Sequence of Subprograms

Claim:

{x = 1} y := x + 1; z := y + 1 {z = 3}

Proof.
Insert the assertion {x = 1 ∧ y = 2} between the two statements

Prove {x = 1} y := x + 1 {x = 1 ∧ y = 2} (follows from a
previous claim)

Prove {x = 1 ∧ y = 2} z := y + 1 {x = 1 ∧ y = 2 ∧ z = 3}
(also follows from a previous claim)

Correctness of the claim follows.

Termination: Obvious (two simple statements

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 10 / 21

Strategy and Examples Important Cases

Strategy for Proving Correctness of Sequences

Assume program S is a sequence of statements or blocks S1, . . . , Sn

to prove {P} S {Q}, create assertions (logical statements
involving the program’s variables) A1, . . . , An−1 that should hold
between each pair of consecutive statements
prove {P} S1 {A1}, {A1} S2 {A2}, . . . , {An−1} Sn {Q}

this proves partial correctness

prove that each of S1, . . . , Sn terminates individually
this proves termination

If partial correctness and termination are proved, then S is correct.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 11 / 21

Strategy and Examples Important Cases

Program is a Conditional Statement

Claim:

{ x is a nonnegative integer }

if even(x) then
y := x + 2

else
y := x + 1

end if

{ y is an even integer and either y = x + 1 or y = x + 2 }

. . . assuming even() decides whether its input is even

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 12 / 21



Strategy and Examples Important Cases

What Do We Know?

If the program’s test is satisfied:

x is even

y = x + 2 and y is even (because x is even)

If the program’s test is not satisfied:

x is odd

y = x + 1 and y is even (because x is odd)

Main idea: prove each case separately

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 13 / 21

Strategy and Examples Important Cases

Proving Correctness of Conditional Statements

To prove
{P} if T then S1 else S2 end if {Q}

Show that

{ P ∧T } S1 {Q }
{ P ∧∼T } S2 {Q }

Termination:

holds if T , S1, and S2 all terminate

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 14 / 21

Strategy and Examples Important Cases

Program is a Loop

Claim:

{ n is a nonnegative integer }

i := 0; s := 0;
while i < n do
{ i = j , s = sum of the first j positive integers, and 0 ≤ i ≤ n }
i := i + 1; s := s + i

end while

{ s is the sum of the first n positive integers }

Add special assertion I(j) (should be true after j iterations):

i = j , s = sum of the first j positive integers, and 0 ≤ i ≤ n

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 15 / 21

Strategy and Examples Important Cases

Loop Invariants

I(j) is an example of a loop invariant:

an assertion I(j) that is true immediately after the loop body
has been executed j times, if the loop body is actually
executed j times, for all j ≥ 0

Necessary Properties:

The pre-condition implies that I(0) holds

I(j) implies the post-condition whenever the loop body is executed
exactly j times

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 16 / 21



Strategy and Examples Important Cases

Useful Properties

To establish the above “Necessary Properties,” show that:
1 I(0) is satisfied before the first execution of the loop!
2 If I(j) is satisfied after the j th execution and there is a j + 1st

execution, then I(j + 1) is satisfied after the j + 1st execution, for
each integer j ≥ 0.

3 If there is a j th execution but not a j + 1st execution then I(j)
implies the postcondition (again, for each integer j ≥ 0).

Exercise:

Show that all three properties hold for the example. Note that I(0)
should hold just before the first execution of the loop body.

What proof technique (from MATH 271) could be used with these
properties to prove the claim?

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 17 / 21

Strategy and Examples Important Cases

Proving Termination of a Loop

Loop Variant: An integer-valued function f of the program’s variables
such that:

the value of f is decreased by at least one every time the loop
body is executed,

loop terminates (immediately!) if f ’s value is zero or negative after
any execution of the loop body.

Loop Variant for the Example Program: f (n, i) = n − i

number of executions of loop body is at most f (n, 0) = n − 0 = n
(f evaluated with the loop index set to 0)

Note: “Loop variants” have different names in different references
(when they are mentioned, at all).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 18 / 21

Strategy and Examples Important Cases

Other Kinds of Programs

Useful “proof rules” like the above can also be provided for

other kinds of tests and loops

calls to nonrecursive methods

a recursive use of a method

In each case the “proof rule(s)” corresponds to what the statement is
supposed to do.

Exercise: Try to think of appropriate proof rules for each of the above
kinds of programs.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 19 / 21

References

References

Discrete Mathematics textbooks sometimes include “proofs of
correctness” of algorithms as an application of mathematical induction:

Recommended References:

Susanna S. Epp
Discrete Mathematics with Applications, Third Edition
See Section 4.5

Kenneth H. Rosen
Discrete Mathematics and Its Applications, Sixth Edition
See Section 4.5

Note: Epp’s text does not define a loop invariant in the same way as
these notes do, and partial correctness and termination are not
considered separately there.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 20 / 21



References

For Further Reading

Textbook, Section 2.7

Each of the following — rather demanding — references is available on
reserve in the library:

Edsger W. Dijkstra
A Discipline of Programming

David Gries
The Science of Programming

These may be challenging, especially for students who have not
already completed PHIL 279 (or taken another course in mathematical
logic)!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #3–4 21 / 21


	Definition and Motivation
	Definition
	Motivation

	Parts of a Proof
	Partial Correctness
	Termination

	Strategy and Examples
	Strategy
	Important Cases

	References

