Cognitive Cubes: a TUI for Cognitive Assessment

Ehud Sharlin

Yuichi Itoh

Benjamin Watson

Yoshifumi Kitamura

Steve Sutphen

Lili Liu

Univ. Alberta

Osaka Univ.

Northwestern Univ.

Osaka Univ.

Univ. Alberta

Univ. Alberta

What's coming

Interface: ActiveCube

Application: cognitive assessment

System: Cognitive Cubes

ActiveCube: a 3D interface

Intuitive 3D modeling

Real-time interaction

Bi-directional interface

ActiveCube: 3D modeling

Intuitive 3D modeling

In construction of 3D shape In understanding of 3D shape

Real-time interaction

Bi-directional interface

ActiveCube: real-time

Intuitive 3D modeling

Real-time interaction

Interactive capture of 3D shape Physical & virtual object consistency

Bi-directional interface

ActiveCube: bi-directional

Intuitive 3D modeling

Real-time interaction

Bi-directional interface

Other I/O functions in cubes
Can arrange functions spatially
Clear causality between I/O

ActiveCube: video

ActiveCube: other apps

Assessment: why do it?

Diagnosis

Of disease and injury

Monitoring

Of recovery and decline

Research

About brain function

Assessment: spatial tests

Constructional

Integrating of perception & action

Relevant

Strongly related to everyday tasks

International

Little dependence on language & culture

Assessment: typical test

Assessment: why automate?

Reliability

Consistent testing & scoring

Sensitivity

3D complexity & high res measures

Reduced cost

Less training & adaptive testing

Cognitive Cubes: task

Match this...

...with this.

3 task types: follow, match & reshape

Cognitive Cubes: 4 measures

Time to completion

Similarity at completion # intersecting cubes - # extra cubes

Derivative of similarity

Change in similarity over time

Zero crossings of similarity # times similarity worsened

Cognitive Cubes: similarity

Cognitive Cubes: evaluations

Cognitive sensitivity evaluation

To known cognitive factors

Test comparison evaluation

To standard mental rotation assessment

Cognitive Cubes: test variables

```
Age
Seven < 37 yrs, seven > 55 yrs, (2 AD)
```

Task type 8 follow, 15 match, 10 reshape

Shape type

9 two dimensional, 24 three dimensional

Cognitive Cubes: sensitivity

Age: significant by time & derivative

Task type: by all measures

Shape type: by all measures

Task x shape: by all measures

2D: reshape > match = follow

3D: reshape > match > follow

Cognitive Cubes: sensitivity

Cognitive Cubes: sensitivity

Cognitive Cubes: comparison

Conclusions

Promising results

Sensitivity to factors, some correlations

Readying for prime time Extensive studies of score distributions

Future research

Difficulty and shape complexity

Decision trees

Questions?