
A Robotic Colleague for Facilitating
Collaborative Software Development

Ruth Ablett Shelly Park Ehud Sharlin Jörg Denzinger Frank Maurer
Department of Computer Science

University of Calgary
2500 University Drive NW

Calgary, AB, T2N 1N4, Canada
{ablettr, parksh, ehud, denzinge, maurer}@cpsc.ucalgary.ca

ABSTRACT
Robots exist in both the virtual domain of computers and the
physical realm with humans, and therefore offer an effective
interface between the two. A robot as an autonomous mobile
agent can offer visual, audio and tactile interaction for a team of
humans to support computer-mediated communications. In this
paper, a robot is used to mediate communication between
humans for Agile software engineering teams and also delivers
system critical information to the developers by providing
ambient information about the software build. We believe that
agile software engineering, with its human-centric practices, can
benefit from the use of a robot to facilitate collaborative
software development, and enhance communication between
developers.

Keywords
Collaborative Software Development, Robots, Human-Robot
Interaction, Agile Software Engineering, Natural Language
Understanding

1. INTRODUCTION
Agile methods refer to human-centric software engineering
methodologies that advocate developing high-quality software
in short iterations. Agile approaches emphasize interactions and
collaborations between people [1] rather than large
documentations and rely heavily on automated regression
testing to ensure internal software quality. Because the methods
emphasize face-to-face interaction and producing working
software in short iterations, the communication between the
team of developers can be intensive and constantly requires
context-sensitive information about the state of the development
progress.
A robot has the potential to be an effective assistant to an agile
team, especially in supporting face-to-face team
communications about the development progress and in
providing ambient display about the software build to quickly
assess the state of the project, thus providing encouragement or
an incentive to improve. The robot is unique in that it possesses
the ability to physically respond to virtual stimuli, bringing

awareness information from the digital realm into the physical
and vice-versa. In this paper, we present two robotic support
functionalities for agile teams: BuildBot works in cooperation
with humans to help achieve continuous integration and
ScrumBot supports project progress meetings (so called daily
scrums).

2. BACKGROUND INFORMATION
In continuous integration, every time new code is checked into
the shared source code repository, the entire software is re-built,
deployed and tested against a suite of automated regression
tests. Continuous integration and frequent check-ins of tiny
increments of code ensures that existing functionality is not
broken by the new code. A simple bug which may take only a
few minutes to repair in the early stages may end up costing
huge numbers of person-hours if not detected early. Continuous
integration facilitates the early detection of bugs.

Savoia [3] has created an ambient feedback device, Java Lava
Lamps, that helps the team keep track of the build status. The
continuous integration server is connected to two lava lamps,
one green (indicating a stable build) and one red (indicating a
broken build). Only one has power at any given time. Because
lava lamps take a few minutes to heat up, it was possible to tell
how long the build had been broken, judging by the bubbles of
lava on both lamps. Further, the developers were trying to fix
the problem before the lamp heated up – this voluntary, playful
behavior created a self-supervision of developers instead of
having to involve a manager. While this approach is simple, it is
also limited by its ambient, visual-only nature. The developers
must look at the lamps to get an idea of the build status.

In Agile development, the software requirements are written
down in a form of index cards rather than in a long paragraphed
document. These index cards are used to document requirements
and measure the development progress. The purpose of a daily
Scrum meeting is to briefly communicate the developers’
progress, report problems they encountered and discuss the
plans for the next iteration.

3. DESIGN AND IMPLEMENTATION
With BuildBot (based on a Sony AIBO [4]), we are trying to
further the human-computer collaboration by using a robot as a
collaborating tool to actively deliver ambient information. We
believe robotic embodiment of the state of the software build
can help an agile team collaborate more effectively, especially if
the robot can physically interact with the team members. The
robot would act as a dynamic information radiator that delivers
the information physically rather than a static one that tends to
get ignored [2]. When the ambient data is applied to continuous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright is held by the author/owner(s)
CSCW’06, Nov 4–8, 2006, Banff, AB, Canada.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

integration, it provides important information pertaining to the
current build status and alerts the team when the different parts
of the software don’t integrate properly. It also gives the team a
sense of accomplishment that the project is being tested and
introduces individual accountability in a playful way.

The main design goal behind BuildBot was to use the idea of the
collective awareness of agile teams to create an engaging and
fun tool that will help the team to fix a broken build as quickly
as possible. Whenever a change is uploaded to the shared code
repository by a team member, the continuous integration
component runs a script that integrates the entire team’s code
together. If the new code integration and testing was successful,
BuildBot provides positive feedback to the entire team by
happily barking from its home base and showing green LED
lights.

If the tests fail, the build is broken. Then BuildBot would
deliberately walk slowly to the individual who had uploaded the
new, broken code and display to the team that it is unhappy with
that person. BuildBot will deliberately walk slowly and
dramatically to alert the team of the broken build via sound and
visual cues, and to the responsible individual through an e-mail,
alerting and giving them the time to fix the problem. It also
creates a kind of playful tension as the other team members
wonder where the robot will be going. Giving the responsible
individual a lighthearted and friendly ‘punishment’ introduces
more targeted accountability.

In order to allow the robot to walk to the team member’s desk,
we designed a vision algorithm analyzing the streaming video
from the robot’s camera. For simplicity, white tape was used for
the lines on the floor leading to each team member’s desk.
These lines are a navigation guide, linking BuildBot’s base
station to the network of lines and allowing it to walk to a
developer’s desk via the simplest route. The lines on the floor
have junctions which branch off at 90 degrees.

When walking, the robot keeps track of these junctions and
consults an internal map which gives directions on how to get to
each workstation based on the junctions it encounters. Once
BuildBot reaches the end of a line, it looks up and gently
‘punishes’ the team member by barking and growling. This
robotic reprimand will cease when the build is fixed, or when
the robot senses a touch on its head sensor. We currently have a
working prototype of BuildBot which was evaluated only in an
informal and limited user study.

Figure 1: BuildBot delivering the message of broken build

ScrumBot participates in daily Scrum meetings. The goal of this
project is to further computer-mediated collaboration based on
human speech. ScrumBot is collaborating with the group by
gathering information and distributing it to the team. Currently

the system has two separate parts: the summarizer engine and
the robot’s emotional engine. The summarizer is made up of a
list of basic phrase lists and a list of important key words. The
speech recognition engine [5] is fed with the basic set of phrases
compiled from previous meetings and phrases in index cards.
Research has shown that instead of solely relying on the speech
recognition, which generally produces many incorrectly
recognized phrases, confining the system to listen for some pre-
chosen phrases can improve the recognition rate [6]. When pre-
chosen phrases are heard, they and their context are compared
with the list of important keywords. The summarizer extracts
only the phrases that contain the important keywords and
publishes a meeting summary. In the current state, the meeting
is facilitated by the system as it currently cannot deal with ad-
hoc meetings and cannot gracefully recover from unpredictable
scenarios of human conversations.

Currently, the robot can express two states of emotions and it
can interact with humans tactical senses on the table. If the robot
is happy it expresses this emotion to the person that made it
happy (by contributing what was expected from this person) by
looking at the person and displaying nice looking colors. It can
also express confused state by walking away from the
“offending” person. The already mentioned vision algorithm
makes sure that the robot will not walk outside the table
boundaries.

4. FUTURE WORK
Our major future effort for this project is to perform a formal
evaluation of our system with a group of developers and to
determine if BuildBot and ScrumBot are actually helping the
team. BuildBot in its current implementation is not able to
recharge its own batteries. BuildBot should be able to find its
own power station using its camera. We are also need to address
the issue of BuildBot’s inability to recognize if a developer is
actually sitting at her workstation. For ScrumBot, we are
planning to integrate the summarizer engine with the physical
robot interface in the near future. The robotic interface
emotional engine has to be tightly integrated with the
confidence level of the speech recognition. The next major step
is to let humans facilitate the meeting when the robot behaves
only as an assistant that summarizes the meeting. Fulfilling this
still requires extensive system training and user evaluation to
improve both the speech recognition and user interaction.

5. REFERENCES
[1] Agile Manifesto. http://agilemanifesto.org

[2] Cockburn, A. Agile Software Development: The
Cooperative Game, Agile Software Development Series,
Addison-Wesley, NJ, 2001, pp 70-80

[3] Savoia, A. “eXtreme Feedback for Software
Development”, 2004
http://www.developertesting.com/archives/month200404/2
0040401-eXtremeFeedbackForSoftwareDevelopment.html

[4] Sony Aibo Home page. http://www.sony.net/Products/aibo

[5] Microsoft SAPI
http://www.microsoft.com/speech/download/sdk51/

[6] Park, S., Denzinger, J., Maurer, F., Sharlin, E. “An
Interactive Speech Interface for Summarizing Agile Project
Planning Meetings”, CHI 2006 WIP, ACM Press, 2006

