CPSC 031 - Mathematics Review for CPSC 413

Warmup Problems for Mathematical Induction

September, 2000

These problems can be solved using mathematical induction. They are a bit simpler than the problems in Exercise \#1, so you can start with these if you need practice in using mathematical induction, and find the problems in Exercise \#1 to be too challenging to start with.

Note that you might also be able to solve some of these problems, in a different way, without using mathematical induction at all! However, the purpose of this exercise is to give you practice using mathematical induction, so you should look for a way to use mathematical induction when you answer these questions.

1. Prove that $n^{2}-n$ is an even number, for every integer $n \geq 0$.
2. Prove that $n^{3}-n$ is divisible by 6 , for every integer $n \geq 0$. You may use the fact that you proved in the first question, without proving it again.
3. Prove that

$$
\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for every integer $n \geq 0$.
4. Prove that

$$
\sum_{i=0}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for every integer $n \geq 0$.
5. Prove that every binary tree with n edges has exactly $n+1$ nodes, for every integer $n \geq 0$.
6. Prove that every (nonempty) binary tree with depth d has at least $d+1$ nodes and at most $2^{d+1}-1$ nodes, for every integer $d \geq 0$.

