CPSC 031 - Mathematics Review for CPSC 413

Exercise \#2 - Limits and Derivatives
September, 1999

Please try these exercises before the 6pm lecture on September 9 .

1. Compute each of the following limits or explain why it does not exist.
(a) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$
(b) $\lim _{x \rightarrow+\infty} \frac{x^{2}+2 x+1}{3 x^{2}+5}$
(c) $\lim _{x \rightarrow 0} \frac{x}{\cos (x)-1}$
(d) $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{\sin (3 x)}$
2. Compute the derivative (with respect to x) of each of the following functions.
(a) $f(x)=3 x^{2}+2 x+1$
(b) $f(x)=x \ln x$
(c) $f(x)=x / \ln x$
(d) $f(x)=e^{x^{2} \ln x}$
3. Derive the Quotient Rule (as given below), starting with the definition of a derivative, and assuming that the functions f and g are both differentiable at a and that $g(a) \neq 0$.
Quotient Rule: If $h(x)=\frac{f(x)}{g(x)}$ then

$$
h^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}} .
$$

4. Prove that

$$
\lim _{x \rightarrow+\infty} \frac{(\ln x)^{n}}{x}=0
$$

for every natural number $n \geq 1$.

