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Abstract—We present a general scheme for testing multi-
agent systems, respectively policies used by them, for unwanted
emergent behavior using learning of cooperative behavior via
particle swarm systems. By using particle swarm systems in
this setting, we are able to create agents interacting/attacking
the tested agents that can use parameterised high-level actions.
We also can evaluate the quality of an attack using several
measures that can be prioritised and used in a multi-objective
manner in the search. This solves some general problems of
other testing approaches using learning.
We instantiate this general scheme to test harbour patrol and

interception policies for two Canadian harbours, showing that
our approach is able to find problems in these policies.

I. INTRODUCTION

The backbone of any security operation are the policies

that guide for everyone involved in the operation their actions

and behaviors. While it is very difficult to have policies

that eliminate every risk, the better the policy the less risk

is to be expected, assuming that everyone follows their

roles in the policy. Therefore, testing policies to identify

attacks that are not covered by them is an important task for

policy developers. Finding problems in policies, like finding

problems in many systems, is a very challenging task that

usually requires domain experts that do not fall prey to

making assumptions that later turn out to be wrong. What

problems such assumptions can cause was demonstrated by

Lenat’s systems (see [1]) quite some time ago. But not only

wrong assumptions cause problems with the kind of testing

required for security policies: the possible events and their

timing cover so large possibility spaces that it is impossible to

systematically test each possibility. Then the intuition of the

testers influences the test outcome substantially. And human

intuition is not always working on command.

Computational Intelligence, more precisely evolutionary

learning of cooperative behavior, can assist in the testing of

security policies. In [2] and [3], the concept of evolutionary

learning of cooperative behavior to test complex systems

and especially multi-agent systems was introduced. It allows

for the use of learning and cooperating agents to take over

the role of the human tester when provided with some

kind of measure for situations that indicates how near to

an unwanted behavior the tested system has come in the

measured situation. While the two cited examples showed

the big potential of this approach, we had to observe several

problems when trying to use the instantiation presented in

[3] for the problem of testing harbour patrol and interception
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policies. In particular, testing complex policies requires inter-

action sequences that are too long to make them feasible to

be learned. There are subproblems involved that are difficult

to solve via learning but for which good other solution

approaches exist. Descriptions of unwanted behavior often

include several conditions that need to be fulfilled for the

behavior to be called unwanted. And the fitness measure

suggested in [3] requires some weighting of these conditions

that is difficult to come up with.

In this paper, we describe an extension, resp. alternative,

to the approach in [3] that solves the problems mentioned

above well enough to allow us to test harbour patrol and

interception policies in simulations by evolving coordinated

“attacks” by so-called attack agents that reveal weaknesses

(unwanted emergent behavior) in these policies, resp. in a

multi-agent system employing these policies. The general

ideas of our approach are to use a multi-objective particle

swarm system to evolve waypoints for the attack agents,

realize the navigation from waypoint to waypoint using stan-

dard path planning approaches and compare the quality of

two waypoint sequences using the lexicographic combination

of several sets of multiple objectives. The later allows to

make use of the different conditions on what is considered

a successful attack against a policy.

The experimental evaluation of our approach with several

patrol and interception policies we created for two harbours

with military installations showed that our method is able

to find various types of weaknesses in the policies, thus -as

in case of [3]- fighting ”fire with fire” by using the emer-

gent behavior of a learning multi-agent system to identify

emergent misbehavior of another multi-agent system.

II. BASIC CONCEPTS

In this section, we explain the general setting for using

learning of behavior to test systems and introduce basic

notations around this setting. In the second subsection, we

present Particle Swarm Systems (PSS) and how they can be

used as a method for multi-objective optimisation.

A. Learning of cooperative behavior for testing

A multi-agent system (MAS) usually consists of a set of

agents A and an environment Env in which the agents of A

interact with each other. Testing such a MAS for unwanted

behavior usually means that there are either additional agents

outside of A acting in Env or that A is split into a set

of agents to be tested and a set of agents that are under

control of the tester. In both cases, from a testing point of

view, we have two sets of agents, namely the set Atested
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Fig. 1. General unwanted behavior test setting

= {Agtested,1,...,Agtested,m} of agents that are tested
1 and

the set Aattack = {Agattack,1,..., Agattack,n} of agents that
aim to attack the statement that Atested does not show a

particular unwanted behavior. In [3], a third set of agents,

so-called bystander agents, Abyst = {Agbyst,1,...,Agbyst,k},
was also introduced to model the fact that often there will

be also agents in Env that are not part of Atested and also

not under the control of the (human) tester.

Instead of having a human tester guiding the agents in

Aattack, trying to find interactions that result in the agents in

Atested showing the unwanted behavior, a machine learner

directs the agents in Aattack, creating for each Agattack,i

a strategy, having the agents in Aattack with the created

strategies interact with the agents in Atested and Abyst in

Env (or a simulation of it), analysing the resulting behavior

of the tested agents (and what happened in Env) leading to

new strategies for the attack agents, and repeating this cycle

until the unwanted behavior emerges or a resource limit is

reached. Figure 1 presents the general structure of this kind

of testing system.

If we describe the set of actions of an agent Agattack,i

by the set Actattack,i, then a particular test run using a

particular strategy for each attack agent can be described

as a sequence of timed actions for each agent in Aattack:

(ti,1,ai,1),...,(ti,li ,ai,li), with ai,j ∈ Actattack,i and ti,j a

number of time units, that creates a sequence e0,e1,...,ex (a

trace) of environmental states. Naturally, environmental state
changes are not only due to actions of attack agents, they also

are the result of the actions of the other agents or even due

to environmental events.

B. Particle Swarm Systems

Particle Swarm Systems (PSS, see [4]) are among the

many set-based search models used for optimisation and

inspired by nature. As the name suggests, PSS are inspired by

physics and biology, enhancing the idea of a moving particle

1These tested agents will be called patrol and interception agents in our
application in Section IV-A.

with the attraction behavior of members of a swarm. The

search state in a PSS is represented by a set of l particles pi

each of which is characterised by its current position posi, its

current velocity vi, and its best position besti. The position of

a particle represents a possible solution to the search problem

the PSS is supposed to solve, and usually such a solution is

a vector of continuous variables, although by rounding to the

nearest allowed value it is possible to also deal with discrete

variables. The quality of a position/solution is with respect

to a function f that the PSS is supposed to optimise.

The search in the basic variant is performed by updating

each particle in the state according to the following equa-

tions:

vnew
i = Wvi+C1r1(besti−posi)+C2r2(Best−posi), (1)

posnew
i = posi + vnew

i , (2)

where W is a weight parameter controlling the influence of

the previous velocity, C1 is the so-called cognitive learning
factor, C2 the so-called social learning factor and r1,r2 ∈
[0, 1] are random values chosen by the search control.Best is

the best position the whole swarm has found so far. Naturally,

if a particle reaches a new best position, i.e. f (posnew
i ) is

better than f (besti), then besti is updated, i.e. bestnew
i =

posnew
i , else it stays, i.e. bestnew

i = besti. This update of

each particle is repeated either for a given number of update

rounds or until a given amount of time has elapsed or the

best position fulfills certain conditions.

Particle Swarm Systems can also be modified for multi-

objective optimisation. In multi-objective optimisation, we

are not just interested in finding an optimal solution of

variable values for one quality function f , but for a whole

vector �f = (f1,...,fq). Usually, there is not one position that

is optimal for all quality functions, instead positions that are

very good for one fi often are not so good for an fj . A key

concept of multi-objective optimisation is the domination of
one solution x1 over a solution x2, denoted by x1 ��f x2

which is defined by fi(x1) ≥ fi(x2) for all i (if our goal is to

maximise all functions in �f ). The subset POS of all possible

solutions sol to a multi-objective optimisation problem where

for each x1 ∈ POS we have that there is no x2 ∈ Sol,

x1 �= x2, such that x2 dominates x1 is the so-called Pareto-

optimal set of the particular instance of the problem.

Since the domination relation gives us only a partial

ordering on positions in a PSS, a PSS for multi-objective

optimisation is more complex than the basic version. In

fact, there are many different variants of PSS for multi-

objective optimisation (see [5] for an overview). For our

application, the following rather primitive variant was suf-

ficient. We extend the definition of a particle to a triple

pi = (posi,vi, Ownbesti), where the set Ownbesti records

all previous positions of pi that are not dominated by

any of the other previous positions of pi. Instead of just

one solution Best for the whole particle swarm, we se-

lect the position Best in Equation (1) out of the sets

Ownbest(i−1) mod l and Ownbest(i+1) mod l of non-

dominated solutions of the “neighbours” of particle pi.
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The selection is done randomly every time Equation (1) is

applied, as is the selection of an element from Ownbesti

to play the role of besti in (1). After the new position of

pi is created, it is checked if it is dominated by an element

of Ownbesti. If it is not, it is added to Ownbesti and all

elements in Ownbesti that are dominated by posnew
i are

removed from it. Again, the search is finished if a given

time limit or number of updates is reached or the union of

all Ownbestis fulfills certain conditions.

III. PSS-BASED LEARNING OF ATTACK BEHAVIOR

As already stated, our goal is to modify the general

testing approach by learning of cooperative behavior from

Section II-A to allow for actions with parameters that can be

expressed as real numbers and to allow for several measures

how near to an unwanted behavior an attack team has come,

without having to come up with one combined measure. As a

side effect, being able to have actions with parameters allows

then also to use “high-level” actions in the attack agents that

trigger complex computations generating whole sequences of

“low-level” or primitive actions of an agent. All such high-

level actions usually require parameters.

Our solution is to use a multi-objective particle

swarm system to perform the learning of the

behavior of the attack agents. This allows us to

express the strategy of an individual attack agent

Agattack,i as a sequence of timed parameterised actions:
(ti,1,ai,1(pi,1,1,...,pi,1,pamax

)),...,(ti,li,ai,li(pi,li,1,...,pi,li,pamax
)),

where ti,j is again a number of time units, ai,j the

(numerical) identifier for a parameterised action and pi,j,o

(numerical) parameter values for actions. A position pos for

our PSS then consists of a strategy for each attack agent,

i.e.

pos = (((t1,1, a1,1(p1,1,1, ..., p1,1,pamax
)), ...,

(t1,l1 , a1,l1(p1,l1,1, ..., p1,l1,pamax
))), ...,

((tn,1, an,1(pn,1,1, ..., pn,1,pamax
)), ...,

(tn,ln , an,ln(pn,ln,1, ..., pn,ln,pamax
)))).

Since all elements in this complex vector are numerical

values, real numbers in fact, the vector is suitable for the

operations a PSS performs during search. But before we go

into more detail regarding the learning process using PSS,

we first present how an attack agent Agattack,i creates out

of its strategy sequence its real behavior in Env.

Given a strategy sequence, Agattack,i rounds each ti,j to

the next integer and does the same with each ai,j . It waits

(rounded) ti,1 time units before performing the action that it

associates with the number indicated by the rounded value of

ai,1 for the situation it is currently in (which, at the beginning

of a test run, is e0). Since not all actions are possible in all

situations, we order the possible actions for each situation in

a deterministic manner, so that we can assign to a natural

number a parameterised action (according to its position in

the order of actions). If we have a number that is larger than

the number of possible parameterised actions, we determine

the action by taking the rounded number from the sequence

modulo the number of possible actions (as suggested in [2]).

The action associated with ai,1 will require a number

paai,1
of parameters, which is smaller or equal to the

maximal number of arguments for any actions denoted by

pamax. And these parameter values are provided by the first

paai,1
elements of (pi,1,1,..., pi,1,pamax

) (converted to the

appropriate types out of the real numbers). The remaining

parameter values will be unused (but are necessary, since we

can not know how the value representing the action might

change during the PSS-based search and how the previous

actions might change, which naturally can result in being

in different situations). The indicated parameterised action

with the appropriate number of arguments is then interpreted

and if it is a high-level action it will be transformed into

the appropriate sequence of low-level actions. If performing

the parameterised action (high- or low-level) took less than

ti,2 time units then Agattack,i will wait the remaining time

units in ti,2 until repeating the described steps for the next

parameterised action in the sequence (and so on, until all

actions are performed).

As already stated, the just defined position representing

strategies for all attack agents allows to directly apply the up-

date operations for a particle defined in the last section. What

remains to define to create our complete learning method is

how to compare the positions of particles and, since we will

be using a multi-objective particle swarm system, how to

determine dominance of one position over another. Naturally,

the objectives measuring how near the strategies for the at-

tack agents come to the unwanted behavior we are searching

for are dependent on the application, which means the set

Atested , Env, and the particular unwanted behavior. While

[3] presented one generic measure for its approach, we found

that for some problems there are several measures that should

be taken into account when deciding what strategy is better

than another. Even more, some measures only make sense

(or even only can be computed) after other measures have

reached or went beyond certain values, while for other groups

of measures it is not clear at the beginning of a learning

run which of the individual measures is more important

than others (in finding a strategy that creates the unwanted

behavior). See Section IV-A for example measures. As a

consequence, we propose the following general structure for

comparing two position vectors pos1 and pos2: Our ordering

structure has the form

({f11,...,f1q1
},...,{fu1,...,fuqu

}),

(or ( �f1,..., �fu) for short), where fij , 1 ≤ i ≤ u, 1 ≤ j ≤ qi, is

a quality function assigning an integer to a trace e0,e1,...,ex

of environmental states produced by the strategy for the

attack agents represented by a position when applied in Env

interacting with the other agents2. If � denotes the ordering
that is created by this ordering structure, then we have

pos1 � pos2, if

2We added a second index to an f to reflect that we now have a vector
of sets of objectives, instead of just a vector as has been usual in multi-
objective optimization, so far.
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pos1 � �f1

pos2, or

pos1 = �f1

pos2 and pos1 � �f2

pos2 or

... or

pos1 = �f1,..., �fu−1

pos2 and pos1 � �fu
pos2.

pos1 =�fi
pos2 in this context means that pos1 and pos2 have

an identical quality value in each of the measures fij in �fi

(and = �f1,..., �fi
is short for = �f1

and = �f2

and ... and =�fi
). This

essentially represents a lexicographical combination of multi-

objective domination orderings, which -due to the partiality

of the domination orderings- is itself a partial ordering, so

that two positions might not be comparable. This is an

extension of the lexicographical combination for orderings

for PSS for single-objective optimisation presented in [6].

The lexicographical combination allows us to express that

certain quality measures need to be achieved before im-

proving other quality measures makes sense (in the search),

by putting the certain quality measures before the other

measures in our combined ordering. Having each element

in the lexicographical ordering as a set of measures, for

which the ordering is realized using the domination criterion,

is very useful for our purposes because often it makes

no difference which agent achieves a certain effect in the

interaction with environment and other agents and we can

then have an individual measure for such an effect for each

agent in the set. Since � is a partial ordering (and has

domination ordering components) we have to use a PSS for

multi-objective optimisation (with � being the ordering used

to determine domination between positions) and we use the

one described in Section II-B for evolving the behavior of

our attack agents. The end criterion contains both a resource

limit and having achieved the unwanted behavior within this

resource limit.

IV. TESTING HARBOUR PATROL AND INTERCEPTION

POLICIES

Harbour security is becoming more and more a serious

issue, especially for harbours that serve both civilian and

military vessels. With traffic above water and the possibility

of attackers also below water, a total coverage of the whole

harbour with the necessary sensors is nearly impossible to

achieve (simply due to cost), so that mobile sensor platforms

are needed that either alarm interceptor platforms or also

serve as interceptor platforms themselves. While detecting

potential attackers is the first important task of any harbour

security policy, neutralising attackers before they can com-

plete their attack is as important.

A. Instantiating our approach

With regard to the general setting described in Section II-

A and Figure 1, the multi-agent system we want to test are

a fleet of harbour patrol and interception vessels following a

patrol and interception policy for a particular harbour. So,

each Agtested,i represents one vessel, with all its sensor

capabilities, and its implementation of the general policy.

The elements of Aattack are a group of attack (or intruder)

vessels, which in our experiments did not include any below

water vessels or assets. The bystander agents of Abyst would

be all other vessels that could navigate a harbour, from

ferries, over container ships to pleasure and rowing boats.

The environment Env that we should be interested in is

the real harbour, but naturally it is not possible to evaluate

various policies with real vessels in the real harbour setting.

Instead, we are using a GIS-based harbour simulation. The

GIS (Geographic Information System) provides all the geo-

graphic information about the harbour and it also stores the

current locations of all agents in the simulation (and their

history). The movement of all vessels (agents) is computed

in frames of 1/10ths of a second using Euler integration

on forces acting on the vessel. These forces are boat drag,

throttle and the rudder positions as provided by the vessel.

To instantiate our approach from Section III, we need

to define the components of a particle position, i.e. the

parameterised actions, how they are transformed into low-

level actions (i.e. rudder positions and throttle values)

and how we define the ordering � on particle positions.

For navigating in a harbour, our attack agents need only

one parameterised action, namely GoToWaypoint(x,y,
speed). The values of x and y are any real numbers and

speed is between 0.1 and 1 indicating the throttle position.

To realize GoToWaypoint for an agent, we use simple
path planning, as first described in [7], with the goal of

minimising the travelled distance. This planning results in

additional waypoints so that there are no obstacles between

a pair of subsequent waypoints allowing to appropriately set

the rudder position. If a waypoint is not located over water,

then the path planning gets as near to it as possible and then

continues planning from there to the next waypoint.

So, since there is only one parameterised action and the

timing is already controlled by one of its parameters, we can

simplify the general scheme for a position to

(((x1,1,y1,1,speed1,1),...,(x1,l1 ,y1,l1 ,speed1,l1)),...,

((xn,1,yn,1,speedn,1),...,(xn,ln ,yn,ln ,speedn,ln))).

To create an initial position vector for a particle we limit

the possible values for the coordinates for the waypoints,

requiring that each following waypoint in the sequence for an

agent is at most 600 meters away from the previous waypoint.

A simulation run for evaluating a position has all vessels

starting from their initial positions, with the attack agents

starting outside of sensor range of the whole harbour. Every

created frame is available as environment state to be evalu-

ated by quality functions. The number of frames depends on

the duration of the simulation run. We end a run, if either the

attack objective is fulfilled (i.e. the unwanted behavior of the

tested agents has occurred), all attack vessels have reached

the end of their action sequence, or all attack vessels have

been intercepted by the tested agents. In order to intercept

an attacker, naturally they first have to be detected and

classified as having to be intercepted. For this, the tested

agents use sensors. In our proof-of-concept system, each

tested agent perceives the environment as a circle around it,

with the diameter being a system parameter (and naturally it

is possible to hide behind obstacles for a particular sensor).

This is a rather crude realization of perception by the tested
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vessels and we plan to include better sensor simulations in

the future, but for showing the usefulness of our testing

approach it is sufficient.

The unwanted behavior of the patrol and interception

agents, resp. of the policy that guides them, is the ability of

one of the agents in Aattack to reach a spot in the harbour

that is supposed to be secure without being intercepted. Such

a spot could be the docking slip of a particular ship or

a position from which a certain harbour facility could be

destroyed. While the following quality functions are aimed

at finding attack strategies for reaching one single spot (i.e.

a particular coordinate (xgoal,ygoal)), they can easily be

extended to whole areas or collections of spots. If e0,...,ex is

the trace produced by the simulator run for a particle position

pos, then

fintercept((e0, ..., ex), pos) =

⎧⎪⎪⎨
⎪⎪⎩

0, if there is an j, such

that all Agattack,i are

intercepted in ej

1, else

with pos1 �intercept pos2, if

fintercept((...), pos1) > fintercept((...), pos2).

fsuccess((e0, ..., ex), pos) =

⎧⎪⎪⎨
⎪⎪⎩

1, if there are j, i, such

that Agattack,i reached

the target spot in ej

0, else

with pos1 �success pos2, if

fsuccess((...), pos1) > fsuccess((...), pos2).

fdist,i((e0, ..., ex), pos) =

�x/100�∑
j=1

dist(e100j ,Agattack,i)

+dist(ex,Agattack,i)

where dist(e,Agattack,i) is the length of the shortest path
created from the position of Agattack,i in e to the target spot

(again computed using path finding). We define pos1 �dist,i

pos2, if fdist,i((...), pos1) < fdist,i((...), pos2). Then the
ordering structure for � is

({fintercept}, {fdist,1, ..., fdist,n}, {fsuccess}).
This means that an attack strategy that has all attackers

intercepted is always worse than a strategy that has some

attacker “alive” at the end of the simulation (due to the first

component in the ordering structure). The second component

in the ordering structure on the one hand side makes sure

that the search favours positions that have the attack agents

move towards the target spot, but since it represents this

objective for each individual agent, positions that have attack

vessels drawing away the tested agents are not considered

bad as long as one attack agent gets towards the target

spot. The third component of the ordering structure then

favours successful attacks over unsuccessful ones, giving our

system the possibility to “optimise” successful attacks more

(naturally with regard to the previous components, which

means here getting to the target faster).

We also found it useful to introduce an additional possibil-

ity to update a particle based on the idea of targeted operators

from [2]. But instead of trying to avoid a bad action as in [2],

our targeted update tries to force a good action by an agent

if the evaluation of a position shows a particular behavior.

More precisely, if the strategies from a particle position lead

to a point in the simulation where all but one attack agent are

intercepted, then we can update the particle so that the next

waypoint for the agent after the waypoint when all other

agents are intercepted is changed to the target spot. This

reflects the hope that now the way is clear and that this hope

should be tried out.

B. Experimental evaluation

For evaluating our system described in the last subsection

and with this also our general testing by learning of behavior

approach, we created two high-level patrol and interception

policies that can be applied to any harbour and any target

spot to protect, instantiated these policies for two particu-

lar harbours, namely Halifax Harbour in Nova Scotia and

Esquimalt Harbour in Victoria, Vancouver Island, and tried

to attack the policies using our testing system. While we

naturally would have liked to test real patrol and interception

policies for these harbours, for security reasons this was not

possible. Security also did not allow to use old policies, even

ones with known flaws.

The first patrol and interception policy divides the agents

in Atested into patrollers and interceptors. The general idea

is that the patrollers identify potential intruders and alert the

interceptors that then approach a potential intruder, identify it

and, if necessary, take it out. As long as a potential intruder is

in range of the sensors of a patroller, this patroller updates the

alarmed interceptor about the course of the potential intruder.

If a potential intruder comes close enough to a patroller

to be identified, then the patroller will disable it. With the

exception of this case, patrollers stay to their predetermined

route. The interceptors are stationed at predefined positions

in the harbour and only become active when called upon by

a patroller. When active, an interceptor determines the best

position to come near to a potential intruder, based on the

information from the patroller. If the intruder is not found at

that position (resp. within sensor range) then the interceptor

returns to its standard position. We call this policy pat− int.

The second policy, all − pat, does not distinguish the

elements of Atested . All patrollers follow a circuit around the

harbour and the available vessels are evenly spaced on this

circuit. When any patroller detects a potential intruder, the

closest available patroller (to the intruder) is sent to identify

the boat and if this identification has as result the need to

intercept, then this interception takes place.

Both policies naturally have weaknesses. If there are more

intruders than agents in Atested, then the “defenders” can

be easily overwhelmed. Therefore we limited the number of

agents in Aattack to |Atested| or less. Also, we did not use
any bystander agents (although they would clearly make the

task for the agents in Atested harder, but we wanted to see

how good our testing approach was under hard conditions,

i.e. no distractions for the tested system and policy). In all

our scenarios, the perception radius of an agent in Atested
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was 300 meters with 20 meters being the maximal distance

for being able to identify a boat as threat or not.

We instantiated both all − pat and pat − int for the

two harbours we used in our tests. The instantiations of the

general policies were hand-coded by us and communication

between the tested agents was achieved using the GIS. This

means that there were no communication failures possible.

For pat−int and Esquimalt (pat−intEsq) this meant having

two patrollers and two interceptors. One patroller circles

the mouth of the harbour, while the second patroller, the

“goaltender”, does a small circle very close to the target. The

two interceptors have their inactive positions near the dock

adjacent to the target spot. The target is placed deep inside

the harbour behind a pier (see Figure 2 for the position of

the target, which is the same for all our experiments with this

harbour). Policy pat−int for Halifax (pat−intHal) also uses

two patrollers and two interceptors, with the same idea for

the patrollers, i.e. one circling the mouth of the harbour and

one (Patroller 2 in Figure 3) doing its patrol route relatively

near to the target. Figure 3.1 shows also the positions for the

two interceptors when not active, near the target, which is

indicated on the right of the picture (again, this target spot

is the same for all our experiments for this harbour).

For policy all−pat and Esquimalt (all−patEsq) we used

4 patrollers circling around inside the harbour (the four shots

in Figure 2 cannot show the whole harbour, therefore we do

not see Patroller 4 at all and Patroller 3 only comes into

view in the second shot). We also used 4 patrollers for the

Halifax scenarios (all − patHal). As for Esquimalt, Figure

3 only shows part of the harbour, so that the patrollers have

to do a rather large circuit on their patrols making them

vulnerable for good timed attacks. Figures 2 and 3 do not

show the full routes of the vessels (since they would fill

up the pictures too much), but provide some idea of recent

movement by showing where a vessel comes from using the

indicated “tail”.

For each of the four combinations of policy and harbour

we did several scenarios with different numbers of attackers.

For the all−pat policy for Esquimalt, we used only 5 actions

(waypoints) per agent strategy and the learner used l=10

particles with a maximum of 40 updates. The pat − int

policies and the all − pat policy for Halifax were more

difficult to attack, so that in our tests we used 10 waypoints

per agent strategy and l=20 particles in the PSS, with a

maximum of 50 updates. The PSS parameters were set to

W = 0.8, C1 = 0.2, and C2 = 0.4. The whole system ran

on a Pentium 4 machine (2.8 gHz) running Windows XP. A

single simulation run (for attack agents with 5 waypoints)

took on average 3 minutes to complete, so that a complete

run of the system could take days. Since the PSS involves

random factors, we repeated each system run at least 3 times.

Our experiments revealed weaknesses in both policies

(resp. the concrete instantiations of them as represented by

the behavior of the agents in Atested). These weaknesses fall

in two categories: timing of the (cooperative) attack and use

of decoys/sacrifices. We tested all − patEsq with one and

two intruders (all−patEsq,1 and all−patEsq,2). In scenario

all − patEsq,1, in all our runs our test system evolved a

strategy for the intruder that timed its approach to the target

spot in such a way that it is only detected in the last few

moments before reaching the target and due to this very late

detection the nearest patroller is not able to intercept the

intruder. In all − patEsq,2 (see Figure 2), our test system

evolved attacks where the first intruder takes out the nearest

patroller (Patroller 1 in Figure 2), so that Intruder 2 can

pass by and then Intruder 2’s approach is timed in such a

manner that it is not detected by Patroller 2 that is moving

away from the target (relying on Patroller 1 to cover the area,

which does not happen). To test all−patHal, we started with

two attackers (i.e. with all− patHal,2) and were successful,

again. In fact, the successful attack had one of the intruders

avoid all patrollers by appropriately timed waypoints while

the other intruder did not come near to either a patroller or

the target. So, essentially this attack is also possible for a

single attacker (i.e. for all−patHal,1), which is why we did

not run our system for just one attacker.

Policy pat − int was supposed to fix the conceptual

problems of all − pat, by focusing the resources more on

defending the target spot. We hoped especially that there

would be no attacks relying solely on good timing of the

approach. But this hope was only partially fulfilled. While

our system was not able to learn a successful attack strategy

within the given resource limits for a single attacker/intruder

for Halifax harbour (pat − intHal,1) where Patroller 2’s

sensors can see everything that comes near the target spot, the

geography around Esquimalt harbour and the resulting patrol

route for the goaltender still allowed our system to evolve a

timed approach to the target where the attacker/intruder was

not detected.

The larger search space created by two intruders resulted in

unsuccessful runs for pat−intHal,2 and pat−intEsq,2 within

the given resource limits. But both scenarios with three

intruders (pat−intHal,3 and pat−intEsq,3) resulted in attack

strategies for the intruders that are successful. For Esquimalt

harbour, the two interceptors do their job by intercepting

two of the attackers, but this takes them out of the game

for the third attacker that is detected by the goaltender

but passes it beyond identification range and therefore gets

by to the target. For Halifax harbour, a successful attack

found by our system is depicted in Figure 3. The first two

intruders let themselves be spotted by Patroller 1, which

draws out both interceptors, so that when Intruder 3 is spotted

by the goaltending Patroller 2, the nearer Interceptor 1 is

nevertheless too far away to get to Intruder 3 before it reaches

the target. Note that Intruder 3 passes by Patroller 2 at the

farthest distance possible, so that Patroller 2 can not identify

it (and therefore does not become an interceptor).

For all scenarios where our testing system found a suc-

cessful attack it did so in all runs we performed (although

usually with a different number of particle updates). The

found solutions might differ a little bit, but the basic ideas

behind the success were the same.

Authorized licensed use limited to: University of Calgary. Downloaded on January 15, 2010 at 15:34 from IEEE Xplore.  Restrictions apply. 



Fig. 2. The Esquimalt attack for all − patEsq,2. Attack target in 1: the red circle near Patroller 2.

The presented experiments show that our testing approach

is able to find weaknesses in instantiations of harbour patrol

and interception policies and when looking at several scenar-

ios for a particular general policy, the found attack strategies

reveal general weaknesses of the policy. Timing of the actions

was very important to reveal the weaknesses and allowing for

this timing is one of the features of our approach that is new

compared to the previous testing approach using learning

of cooperative behavior. The experiments also highlight a

second important new feature, namely the evaluation of

attack team strategies using an ordering structure that allows

for decoy/sacrifice strategies, i.e. different roles for different

attack agents, without having to build such roles explicitly

into the learner. And, as mentioned in the introduction,

without being able to use high-level actions it would not

have been possible to create the complex behavior that our

attack agents showed in the successful attacks.

V. RELATED WORK

Support for testing multi-agent systems for emergent mis-

behavior is an area that is not very well researched. In

addition to [3], which is the application of the basic idea

from [2] to a multi-agent system, [8] comes nearest to finding

interactions of multiple outside events with a system creating

unwanted behavior, namely creating infeasible schedules in

the model of a scheduler (not the real scheduler). Obviously,

in our work, we are also working with a model/simulation,

since trying out all strategies created by our learner is simply

not possible in the real world. But we are learning action

sequences for several attack agents, not a global sequence of

events as in [8] and we allow for high-level actions and use

of different learning mechanism.

There are a lot of applications of evolutionary methods to

military and security problems. We are aware of two projects

that involve aspects of path planning of relevance to our

project. In [9], evolutionary methods are used to produce a

configuration of an aircraft for a mission. The mission is then

executed using mostly a conventional path planner, which

is similar to how we create the low-level waypoints. [10]

presents an online learning system based on ant systems that

tries to learn how to pass by defenders to reach a mission

target. Naturally, online learning has the risk of bad early

decisions that can make it impossible for the system to solve

the given problem despite the fact that a solution exists. In

both papers, the defenders are stationary.

VI. CONCLUSION AND FUTURE WORK

We presented a new approach for testing multi-agent sys-

tems and policies for groups of agents for unwanted behavior

based on evolutionary learning of cooperative behavior. Our
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Fig. 3. The Halifax attack for pat − intHal,3. Attack target red circle on left.

new approach allows for the use of parameterised actions and

combinations of different evaluation functions in all kinds of

mixtures of hierarchical and multi-objective fashions, thus

giving a test system based on our approach the ability to

create well-timed interactions with the tested system, to

incorporate existing planning algorithms for creating low-

level action sequences for high-level actions, and to use

many possible objectives concurrently to drive the search.

Our experiments with the instantiation of the general concept

for testing harbour patrol and interception policies showed

that our approach is indeed able to find unwanted behavior

by the policies.

In future work, we plan to compare different ordering

structures to explore more the possibilities offered by this

concept. Applying the general approach to different testing

tasks is also of interest. While for the harbour application

the comparison of our approach with the previous approach

clearly favours the new approach (since we were not able

to achieve anything with the previous approach), for other

applications for testing for unwanted behavior the previous

approach might be better suited. Developing guidelines when

to use which approach therefore becomes necessary.

REFERENCES

[1] D.B. Lenat and J.S. Brown: Why AM and Eurisko appear to work,
Artificial Intelligence 23(3), 1984, pp. 269–294.

[2] B. Chan, J. Denzinger, D. Gates, K. Loose, and J. Buchanan: Evolu-
tionary behavior testing of commercial computer games, Proc. CEC
2004, Portland, 2004, pp. 125–132.

[3] J. Kidney and J. Denzinger: Testing the limits of emergent behavior in
MAS using learning of cooperative behavior, Proc. ECAI 2006, Riva
del Garda, 2006, pp. 260–264.

[4] J. Kennedy and R.C. Eberhart: Particle swarm optimization, Proc.
IEEE ICNN 1995, Piscataway, 1995, pp. 1942–1948.

[5] M. Reyes-Sierra and C.A. Coello Coello: Multi-Objective Particle
Swarm Optimizers: A Survey of the State-of-the-Art, Int. Jour. Comp.
Int. Res. 2(3), 2006, pp. 287–308.

[6] T.E. Mora, A.B. Sesay, J. Denzinger, H. Golshan, G. Poissant, and
C. Konecnik: Fuel Optimization using biologically-inspired Computa-
tional Models, Proc. IPC 2008, Calgary, 2008 (on CD).

[7] P.E. Hart, N.J. Nilsson, and B. Raphael: A Formal Basis for the
Heuristic Determination of Minimum Cost Paths, IEEE Trans. Systems
Science and Cybernetics 4(2), 1968, pp. 100–107.

[8] L. Briand, Y. Labiche and M. Shousha: Using Genetic Algorithms
for Early Schedulability Analysis and Stress Testing in Real-Time
Systems, Genetic Programming and Evolvable Machines 7(2), 2006,
pp. 145–170.

[9] C. Miles and S.J. Louis: Case-Injection Improves Response Time for
a Real-Time Strategy Game, Proc CIG-05, Colchester, 2005, pp. 149–
156.

[10] J.A. Sauter, R. Matthews, H. Van Dyke Parunak, and S. Brueck-
ner: Evolving adaptive pheromone path planning mechanisms, Proc.
AAMAS-02, Bologna, 2002, pp. 434–440.

Authorized licensed use limited to: University of Calgary. Downloaded on January 15, 2010 at 15:34 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


