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Fast Ray-Axis Aligned Bounding Box
Overlap Tests with Plücker Coordinates

Jeffrey Mahovsky and Brian Wyvill
University of Calgary

Abstract. Fast ray-axis aligned bounding box overlap tests can be performed by

utilizing Plücker coordinates. This method tests the ray against the edges compris-

ing the silhouette of the box instead of testing against individual faces. Projection

of the edges onto a two-dimensional plane to generate the silhouette is not necessary,

which simplifies the technique. The method is division-free and successive calcula-

tions are independent and consist simply of dot product operations, which permits

vectorization. The method does not compute an intersection distance along the ray

to the box, but this can be added as an additional step. Storage of Plücker co-

ordinates is unnecessary, permitting integration into existing systems. Test results

show the technique’s performance is up to 93% faster than traditional methods if

an intersection distance is not needed.

1. Introduction

Ray-Axis Aligned Bounding Box (AABB) intersection tests are commonly

used in ray tracing acceleration schemes, such as bounding volume hierarchies

[Goldsmith and Salmon 87]. It is important that these tests be as fast as

possible, since millions of them may be needed to generate an image.

The most popular ray-AABB test used today (termed the “standard” test)

computes the distances from the ray origin, along the ray, to each of the six
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planes that define the box [Haines 89]. Three intervals are formed–one for

the two planes perpendicular to the x-axis, one for the y-axis, and one for
the z-axis. These three intervals must overlap, or the ray does not intersect
the box. By exploiting the properties of the IEEE standard floating-point

arithmetic, the algorithm can be simplified and still produce correct results

[Smits 98] (termed the “smits” test).

Plücker coordinates have been previously used in computer graphics [Teller

and Hohmeyer 99], [Mann and Dorst 02], [Bell 45], [Shoemake 98]. We present

a new Plücker coordinate-based algorithm to determine the overlap between

a ray and an AABB. This algorithm tests the ray against the silhouette of

the AABB, instead of testing against individual faces of the box or com-

paring intersection intervals. The test is performed using only dot products

and comparisons (in addition to this, the “smits” test requires division). Its

computational simplicity results in excellent performance.

The idea of intersecting with the silhouette of the box was also proposed in

[Haines 01]. However, that technique required projecting the box faces onto

a two-dimensional plane perpendicular to the ray before performing the ray-

silhouette intersection test. The Plücker-based test does not require that the

edges be projected onto a two-dimensional plane.

Sample source code is available at the web site listed at the end of the

paper.

2. Plücker Coordinates

A line L passing through two points A and B in three-space with coordinates
(Ax, Ay, Az) and (Bx, By, Bz) can be expressed as six Plücker coordinates
L0 . . . L5:

L0 = AxBy −BxAy
L1 = AxBz −BxAz
L2 = Ax −Bx
L3 = AyBz −ByAz
L4 = Az −Bz
L5 = By −Ay .

A ray R can also be expressed as Plücker coordinates R0 . . . R5. The

first point in space is the ray origin O with coordinates (Ox, Oy, Oz). The

second point is the origin O plus the direction vector D with components

(Di, Dj , Dk), giving coordinates (Ox +Di, Oy +Dj , Oz +Dk). Substituting
into the Plücker coefficient equations gives
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Figure 1. Side relation and relative orientation of lines. L is perpendicular to the
page and points toward the reader. side(R,L) is positive if the relative orientation is
clockwise (top), negative if counterclockwise (middle), and zero if the lines intersect.

R0 = OxDj −DiOy
R1 = OxDk −DiOz
R2 = −Di
R3 = OyDk −DjOz
R4 = −Dk
R5 = Dj .

An important relation is side(R,L), which provides information about the
relative orientation of the ray and the line (see Figure 1).

An expression can be derived for side(R,L) as the permuted inner product
of the ray’s Plücker coordinates Rn, and line’s Plücker coordinates Ln [Yam-
aguchi and Niizeki 97], [Bloomenthal and Rokne 94]. Given a line L passing
through points A and B, and a ray R with origin O and direction vector

D, we wish to determine the relative orientation of the ray and the line (see

Figure 2). Using a cross product, compute the surface normal N of the plane

that contains the three points A, B, and O:

N = (A−O)× (B −O) .
The relative orientation of the ray and line (or side relation) is determined

by the sign of the dot product of D and N :

side(R,L) = −(D ·N) .
Hence,

side(R,L) = −D · ((A−O)× (B −O)) .
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Figure 2. The side relation.
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Figure 3. Ray-polygon intersection with Plücker coordinates.
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Expanding and simplifying, the side relations are obtained:

side(R,L) = −Di((Ay −Oy)(Bz −Oz)− (Az −Oz)(By −Oy))
−Dj((Az −Oz)(Bx −Ox)− (Ax −Ox)(Bz −Oz))
−Dk((Ax −Ox)(By −Oy)− (Ay −Oy)(Bx −Ox))

side(R,L) = −Di(AyBz −ByAz) +Dj(AxBz −BxAz)
−Dk(AxBy −BxAy) + (OxDk −DiOz)(By −Ay)
+(OxDj −DiOy)(Az −Bz) + (OyDk −DjOz)(Ax −Bx) .

Substituting back in the definitions of the Plücker coordinates, we get the

permuted inner product:

side(R,L) = R2L3 +R5L1 +R4L0 +R1L5 +R0L4 +R3L2 .

The need to store R2, R4, and R5 can be removed by substituting for −Di,
Dj , −Dk:

side(R,L) = −DiL3 +DjL1 −DkL0 +R1L5 +R0L4 +R3L2 .
Plücker coordinates can also be used for ray-convex polygon intersection

tests (see Figure 3). If the polygon vertices are defined counterclockwise,

then the side relations for the ray and each of the edges must be positive or

zero for the ray to intersect the front side of the polygon [Amanatides and

Choi 97]. Alternatively, one of the side relations must be negative for the

ray to miss the polygon. (If all the side relations are negative or zero, the

back side of the polygon is intersected, but only front-facing intersections are

desired in this case so any negatives can be treated as a miss.) It is important

to note that the distance along the ray where the intersection occurred isn’t

produced. This must be computed separately.

3. Axis-Aligned Box Intersection

The Plücker-convex polygon test may be applied to the problem of deter-

mining an intersection with an axis-aligned bounding box. Recall that an

axis-aligned bounding box has faces perpendicular to the x, y, and z axes (see
Figure 4).

Normally, each face of the box (or planes of the faces, when using the

“standard” or “smits” methods) would be tested to determine if the ray passes

through one of them, and hence intersects the box. The number of faces tested

can be reduced from six to three by classifying the ray based on the signs of its

direction vector components (Di, Dj , Dk). For example, a ray with all three
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Figure 4. Axis-aligned bounding box and MMM rays.

components negative (classified MMM , for “minus minus minus”) will pass
through one of the three faces FEHG, CGHD, or BFGC if it intersects the
box. The other seven ray classes are MMP , MPM , MPP , PMM , PMP ,
PPM , and PPP with the letters M and P corresponding to the signs of the
Di, Dj , and Dk components of the ray. Each ray class is tested against a
different set of three box faces. The ray class can be determined when the ray

is created and stored as a three-bit value within the ray.

To determine if a ray intersects the box, the side relation of the ray and

several of its edges must be computed. The Plücker coefficients for the box

edges are simpler than those of an arbitrary convex polygon due to the axis-

aligned nature of the faces. When computing the coefficients, the edges may

be treated either as rays or as lines passing through two points in space.

Equivalent results are produced with either method, the ray form is used here

as it results in a shorter derivation.

For example, the coefficients for edge FE with origin (x0, y1, z1) and direc-
tion (0,−1, 0) are

FE0 = −x0
FE1 = 0

FE2 = 0

FE3 = z1

FE4 = 0

FE5 = −1 .
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Consequently, the side relation of R and edge FE is

side(R,FE) = −R1 −Diz1 +Dkx0 .
Instead of testing each of the four edges per front-facing box face (maximum

12 tests), the test is optimized so that only the edges of the silhouette of the

box are tested. Thus, only a maximum of six tests are needed. For example,

an MMM ray is tested against box edges BF,FE,EH,HD,DC, and CB.
It does not matter that the six edges are not within the same plane, as

the convexity of the silhouette and counterclockwise ordering of the edges is

preserved as long as the ray is MMM . A different set of edges is evaluated
for each of the other seven ray classes (see Figure 4).

Hence, for an MMM ray, the algorithm is as follows:

if(side(R,DH) > 0) then MISS

else if(side(R,BF) < 0) then MISS

else if(side(R,EF) > 0) then MISS

else if(side(R,DC) < 0) then MISS

else if(side(R,BC) > 0) then MISS

else if(side(R,EH) < 0) then MISS

else HIT .

Depending on the directions of the edges, some of the inequalities may be

reversed. For example, the side relation and inequality side(R,EF ) > 0 can
be rewritten as side(R,FE) < 0.
A separate test is needed to determine if the box is on the positive portion of

the ray. The Plücker tests assume the ray is infinitely long in both directions.

This can be determined from the ray origin. For an MMM ray, test that the

ray origin Ox > x0, Oy > y0, and Oz > z0. The ray is still assumed to be
infinitely long in the positive direction, but a similar additional test could be

used for a truncated ray if the x, y, and z coordinates of the ray’s endpoint
are known.

The logic for the seven other cases is not difficult to derive. For convenience,

the logic is implemented in the source code available online at the web site

listed at the end of the paper.

Computation and storage of the ray’s Plücker coordinates R0, R1, and R3
can be eliminated. Before each ray-box test, subtract the ray’s origin O from
the box’s edge coordinates, producing new temporary box coordinates used

for the intersection test. The ray’s origin is now assumed to be (0, 0, 0), which
makes the ray’s R0, R1, and R3 Plücker coordinates equal to zero in the side
relation equations. Hence, no Plücker coordinates need to be computed or

stored to use this technique despite it being based on Plücker coordinates.

This permits integration into existing ray tracing systems. See the source

code available online for complete details of this optimization.
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The Plücker technique does not, by itself, compute an intersection distance.

This is easily added by computing the distance along the ray to the three

closest planes of the box, once an intersection has been confirmed. The three

closest planes are already known from the ray classification. The correct

distance is the largest of the three distances. The distances to the planes can

be computed with either division or by multiplication with precomputed ray

direction vector component inverses (see Section 4).

The Plücker technique has several useful characteristics. The technique is

free of division operations, unless an intersection distance is needed. Even

then, division can be avoided by multiplying by ray direction vector compo-

nent inverses. (The astute reader will argue that the traditional methods can

also become division-free by multiplying by precomputed inverses. The dif-

ference is that the Plücker technique does not require precomputed inverses

to avoid division, provided that an intersection point is unnecessary.) Also,

computation of the six side relations are independent of each other, allowing

them to be computed in parallel. Computation of a side relation is simply a

three-term dot product as the other three coefficients are 0. This algorithmic

simplicity should permit vectorization of the Plücker code, potentially im-

proving performance substantially. This could be implemented using Intel’s

SSE [Intel Corporation 02] vector instructions, available on all Pentium III

and Pentium 4 processors.

4. Test Results and Conclusions

The Plücker method of ray-box intersection was compared to two other meth-

ods experimentally; the “standard” method and the “smits” method. Per-

formance tests were run under two different types of system: a 2533 MHz

Pentium 4 running Microsoft Windows XP using the Visual C++ .NET 2003

compiler, and a 733 MHz Pentium-III running Red Hat Linux 7.3 using the

gcc 2.96 compiler. Optimization was set to “/Ox” or “-O3” and no special

settings were used and no vectorization of the Plücker calculations was per-

formed (this remains to be explored). Significant speed-up may be possible,

but effort should also be made to vectorize the other algorithms as well, if

possible.

To test the algorithms, 500,000 pairs of random rays and boxes were gen-

erated beforehand and stored in arrays. For each test, each ray/box pair was

tested for intersection 100 times, for a total of 50 million intersection tests.

The percentage of ray/box hits was varied between 0%, 50%, and 100%. This

was done by predetermining which ray/box pairs intersected and then storing

the appropriate mixture in the ray/box arrays. The same set of ray/box pairs

was used for each test, provided the hit percentages were the same. Tests were

performed with both single- and double-precision floating-point arithmetic.



Mahovsky and Wyvill: Fast Ray-Axis Aligned Bounding Box Overlap Tests 43

Additionally, the correctness of the Plücker technique was verified by com-

paring its results to those of the “standard” and “smits” tests for all 500,000

ray/box pairs.

Tables 1 and 2 provide details of the results. The results are broken down

into several types of tests:

• pluecker: Determines whether the ray hits the box, does not compute
an intersection distance. Ensures the box is on the forward extension of

the ray.

• plueckerint: Determines whether the ray hits the box and computes an
intersection distance. Ensures the box is on the forward extension of

the ray.

• standard: The “standard” test. Determines whether the ray hits the
box and computes an intersection distance. Explicitly checks for ray

direction components equaling zero to avoid +/- infinity values.

• smits: The “smits” test. Determines whether the ray hits the box and
computes an intersection distance. Does not check for zero ray direction

components; instead relies on IEEE arithmetic to correctly handle the

+/− infinity values.

Several variations of the methods were devised in order to test some opti-

mization heuristics. These designations were appended to the test type above

to distinguish between them.

• cls: Uses precomputed ray classifications (MMM , etc.) that must be
computed once for each ray and carried in the ray. If absent, the ray

classification is determined within the intersection test and is performed

“on-the-fly” each time.

• cff : Uses three precomputed Plücker coordinates R0, R1, and R3 that
must be computed once for each ray and carried in the ray. If absent, the

ray’s origin is subtracted from the box’s edge coordinates as described

in Section 3.

• div: Uses division to compute the ray-box intersection distance, or ray-
plane intersection distances.

• mul: Uses multiplicative inverses of the ray direction vector components
to compute the ray-box intersection distance, or ray-plane intersection

distances. These must be computed once for each ray and carried within

the ray.
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DOUBLE PRECISION SINGLE PRECISION
hit/miss hit/miss
0M/50M 25M/25M 50M/0M 0M/50M 25M/25M 50M/0M

pluecker: 4.6 5.0 5.3 3.2 3.6 4.0
pluecker-cls: 3.8 4.0 4.1 2.7 3.0 3.4
pluecker-cls-cff: 3.6 3.8 3.9 2.6 2.8 2.9
plueckerint-div: 4.7 5.8 7.0 3.2 5.0 6.8
plueckerint-div-cls: 3.8 5.1 6.4 2.7 4.4 6.1
plueckerint-div-cls-cff: 3.7 5.0 6.2 2.6 4.3 5.9
plueckerint-mul: 4.6 5.5 6.2 3.2 4.2 5.1
plueckerint-mul-cls: 3.8 4.5 5.1 2.7 3.6 4.5
plueckerint-mul-cls-cff: 3.7 4.3 4.9 2.7 3.4 4.2
standard-div: 7.3 8.9 10.5 7.0 8.8 10.6
standard-mul: 5.9 7.0 8.1 5.1 6.3 7.5
smits-div: 7.2 8.8 10.4 6.8 8.5 10.2
smits-div-cls: 6.3 7.3 8.4 5.4 6.6 7.7
smits-mul: 5.5 6.6 7.6 4.8 6.0 7.1
smits-mul-cls: 4.7 5.3 5.8 4.1 4.9 5.6

Table 1. Ray-AABB performance on Pentium 4 2533MHz (WinXP, VC++ .NET

2003). Times are measured in seconds; lower is faster.

DOUBLE PRECISION SINGLE PRECISION
hit/miss hit/miss
0M/50M 25M/25M 50M/0M 0M/50M 25M/25M 50M/0M

pluecker: 28.7 32.0 35.2 20.1 22.5 24.9
pluecker-cls: 19.4 24.8 30.4 15.0 18.4 21.7
pluecker-cls-cff: 19.6 25.6 31.5 14.7 18.1 21.6
plueckerint-div: 29.3 37.3 45.5 20.3 27.6 35.1
plueckerint-div-cls: 20.0 30.0 40.1 15.3 23.5 31.7
plueckerint-div-cls-cff: 19.5 30.7 41.8 15.0 23.5 32.1
plueckerint-mul: 29.0 35.2 41.4 20.1 24.0 28.0
plueckerint-mul-cls: 19.7 27.6 35.5 15.4 20.2 24.9
plueckerint-mul-cls-cff: 20.1 28.6 37.0 15.0 20.2 25.4
standard-div: 32.3 39.7 47.1 27.5 32.9 38.4
standard-mul: 26.3 30.6 35.0 20.3 23.0 25.8
smits-div: 33.1 39.3 45.4 27.0 32.0 37.1
smits-div-cls: 30.9 36.9 42.9 25.1 29.7 34.3
smits-mul: 24.4 28.4 32.4 19.3 21.8 24.2
smits-mul-cls: 22.7 26.4 30.3 18.1 20.1 22.2

Table 2. Ray-AABB performance on Pentium III 733MHz (Red Hat Linux 7.3, gcc

2.96). Times are measured in seconds; lower is faster.
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It is important that the reader make “apples to apples” comparisons when

examining the results. For example, it is not completely fair to compare a

Plücker test that uses division to compute an intersection distance to a “smits”

test that uses multiplication. Instead, compare the tests that use division to

each other, and so on.

In general, the Plücker method performs significantly better than the other

methods, provided an intersection distance is not needed. The fastest Plücker

methods (pluecker− cls and pluecker− cls− cff) are faster than the fastest
traditional method (smits − mul − cls) in 11 out of 12 tests. Performance
is 93% faster in one case (2.9 seconds versus 5.6 seconds). Computation and

storage of ray Plücker coordinates R0, R1, and R3 is not required for good
performance as the results for pluecker − cls and pluecker − cls − cff are
very similar.

If an intersection distance is needed, there is less advantage to using the

Plücker method. It is still significantly faster on the Pentium 4, but the

advantage is less clear on the Pentium III.

An interesting observation is that all the methods benefited significantly

from ray classification and from multiplying by inverses instead of dividing.

Note that “standard” was not tested with ray classification due to its similarity

to “smits.”

We have also implemented the Plücker method in a real ray tracer and

compared results to the standard ray bounding box method. We consistently

observed an improvement of between 2 and 2.5 times in rendering speed. We

used C# for this implementation, rather than C++ so the speed-up is not

directly comparable to the results shown above.
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