
TEXTURE MAPPING THE BLOBTREE

Mark Tigges Brian Wyvill

Dept. of Computing Science
University of Calgary, Calgary, Alberta, Canada

mtigges@cpsc.ucalgary.ca blob@cpsc.ucalgary.ca

ABSTRACT

Recently an automatic solution to the problem of
applying 2D textures to an implicit surface has been
introduced [13]. The method derives a uv-texture
coordinate system by tracing particles from the implicit
surface to a support surface. In this paper we describe
the adaptation of this algorithm to the BlobTree data
structure. The BlobTreeprovides an implicit modelling
system through a hierarchy of blends, CSG and warping
applied to primitives. There are several problems
involved in applying textures in such a general modeling
system, particularly across CSG junctions. In this paper
we identify these problems and introduce some possible
solutions.

1. INTRODUCTION

Implicit surfaces, those defined by an iso-contour of an
implicit function [3], have enjoyed an active research
community for over a decade. The use of this class of
surfaces outside of academia has been restricted to only
special case examples, partly due to the lack of both good
interactive modeling systems and the inability to apply
2D textures.

The use of implicit surfaces in creation of cartoon
like characters [8] has been outlined and extension of
implicit surface modeling to include CSG operations
have made description of solid models for engineering
possible [11]. These steps are progress towards fulfilling
the needs for commercial use. One open problem which
has only partially been resolved, is the derivation of a 2D
texture coordinate system directly from the definition of
the skeletal implicit model.

Parametric modeling techniques have the advantage
over implicit surface techniques, that a natural 2D texture

coordinate system can be easily derived from parametric
space. Implicit surfaces do not yield a two dimensional
parameterization easily. A computed parameterization
would need to be suitable for use in application of
texture maps, and for use in displacement mapping
[2]. Solid texturing techniques have been applied to
implicit surfaces [12], but these methods do not allow
an animator to apply a bi-dimensional texture onto an
implicit surface. For example, the application of a
textured face to an animated figure. Ability to generate
two dimensional mappings for the surface of an implicit
model is required for iso-surface techniques to enter into
mainstream modeling and animation use in computer
graphics.

1.1. The BlobTree

The BlobTree [9] provides a hierarchical data structure
for the definition of complex models built from implicit
surfaces, CSG Boolean operations and field warping
functions. Models built with this system are generally
considered as the hierarchical composition of multiple
objects rather than a complete object (see figure 1).
Typically these components are defined with differing
surface attributes: specularity, reflectance, transmittance
etc; accordingly we wish to include 2D surface
parameterizations for application of texture maps. In
this work we present extensions to the BlobTree that
allow the definition of such parameterizations and their
use for texture mapping.

1.2. 2D Texturing of Implicit Surfaces

An algorithm to map a point on an iso-surface to a point
in a defined texture space was introduced by Zonenschein
et al. [13]. The method bounds the iso-surface to
another surface (known as the support surface) which

Difference

PlaneBlend

Intersection

Figure 1: Example of a model built up from a hierarchy
of primitives and operations.

is easily parameterizable in two dimensions yielding a
2D texture coordinate system. A system of particles are
traced from the iso-surface (x; y; z) to the parameterized
surface, the particle intersection with the parameterized
surfaces gives the (u; v) coordinates which become the
texture coordinates of (x; y; z). The support surface is
any surface on which exists a known texture mapping.
Zonenschein et al. used a cylindrical support surface
to contain the texture space. Spherical and cylindrical
bounding surfaces have been tested but in principal any
other appropriate parameterizable surface can also be
used. Smets-Solanes [6] also uses particle systems but
in his work it is used to transform a mapping to minimize
inconsistencies due to changes to the surface over time.

Incorporating the particle texturing technique into
the BlobTree structure introduces several problems and
considerations. Most notably the introduction of CSG
can cause a discontinuity in the mapping. Also it is
important to consider desired effects in the combination
of mappings and textures at the implicit surface blends.
In section 2 we discuss our computation for the trajectory
of the particles, section 3 discusses the integration of this
computation into the BlobTree and conclusions are drawn
in section 4.

2. TEXTURING ALGORITHM

Texturing implicit surfaces using particle systems
depends on computing the trajectory of each particle.
The origin of a particle M0 is provided by sampling
methods for implicit surfaces [7], or one can use
the vertices from a standard polygonization, [3]. To
adequately deal with problems introduced by the
BlobTree data structure, the algorithm presented here

MP

R

A

iso−surface

support
surface

Figure 2: Top view of particle trajectory from an iso-
surface to a cylindrical bounding surface showing the
components of particle direction.

differs somewhat from the Zonenschein et al. algorithm
(see [13]). More control over the trajectory is required
than that afforded by the differential equation used in that
work in order to adequately deal with CSG junctions and
other BlobTree features. As will be seen in section 3 the
trajectory depends on the type of nodes in the tree for
which we are computing a mapping. This section will
outline the basic calculation.

We need to compute the direction of a particle for any
time t during its trajectory. The particle direction, T, is
computed as the linear combination of two normalized
vectors: the repulsion forceR that controls the direction
of the particle away from the iso-surface and, the
attraction force towards the support surface,A. Figure 2
shows the vector forces on a particle during its trajectory.
The attraction vector A, equation 1 is computed as
the normalized vector lieing in the shortest path to
the support surface (M � C). The gradient of the
field function for the surface, rF (M), is used for the
repulsion vectorR as shown in equation 2.

At =
Mt �C

kMt �Ck
(1)

Rt = rF (Mt) (2)

It should be noted that in the case that the
parameterized bounding surface is a cylinder, C is the
point on the axis of the cylinder for whichA is orthogonal
to the cylinders axis. This means that C will change
during the particles trajectory. This is not the case if the
parameterized bounding surface is a sphere, where C is
the center of the sphere.

The formulation for the directionT of a particle at a
time t is given in equation 5. The weights for the linear
combination are shown as K0 andK1, in equations 3 and
4, and are dependent on the value of the field function

F (M) for the particle position. K0 is the weight for
the repulsion vector, we use F (M). The weight of the
attraction vectorK1 is then computed as 1�K0 to ensure
that T is also a normalized vector.

K0 = clamp(kF (Mt)k; 0; 1) (3)

K1 = 1�K0 (4)

Tt = K0 �Rt +K1 �At (5)

The calculation of the particle position over the trajectory
is given by equation 6.

Mt =Mt�dt +Tt�dt (6)

The calculation of the complete path of the trajectory of
Mt is computed by stepwise solution ofMt, equation 6.

The field function is assumed to have a range between
1 and 0, where the field value F (M) = 1 for a point on
the skeleton and decreases toF (M) = 0 with increase in
distance from the skeleton. The trajectory computation
terminate when the particle leaves the bounding volume
of the field. The reason for this is the first derivative of
the trajectory does not change when the field is constant.
Therefore the texture coordinates for the particle are
already determined when the particle leaves the field.
This point is important as it implies that the support
surface geometry can be inferred by the bounding volume
of the scalar field. This guarantees that there are no
discontinuities in the computed 2D mapping due to the
ends of a support cylinder. There is an assumption
underlying this simplification: that the bounding volume
of the implicit surface, around which the support surface
is defined, is in fact a bounding volume of the non-zero
portion of the scalar field used to define the surface (see
figure 3). This places a restriction on the type of scalar

Figure 3: 2D illustration of the trajectories moving
towards a support surface that bounds the non-zero area
of the scalar field.

field used, namely that it must vanish at some distance
from the skeleton. This is not a severe restriction as most

systems use one of the fields defined in [5, 10] which
are polynomials which vanish at a determined constant
(see [4] for an in depth discussion of field functions for
procedurally defined surfaces).

The method as described,computes a mapping which
contracts at concave areas of a surface and expands at
convex areas (see figure 4). This effect mimics our
interpretation of the blend in a pliable surface, the blend
can be viewed as the stretch between two solids as they
break apart. However this contraction-expansion effect
may not be the generally desired result. We can partially

Figure 4: Texture mapping applied to a simple model.

control the effect by scaling the value of K0 so that
instead of ranging from L (the iso-value for the level
surface) to 0 during the particles trajectory it ranges
from 1 to 0. This range amplifies the effect by placing
more emphasis on the gradient in the calculation of T ,
the particle direction. To reduce the contraction and
expansion of the mapping, scale the range of K0 to
reduce the emphasis on the gradient. This simple trick to

Figure 5: Demonstration of the affect of the influence
of the gradient, ranges of K0 from left to right:
[0:0 : : : 0:0] [0:5 : : : 0:0] [1:0 : : : 0:0].

control the contraction and expansion of the mapping is
not altogether successfull (see figure 5). The stretch of
the texture laterally in figure 5 is controlled however we
would like to be able to compute a mapping where the
checkers are more closely uniform in size over the entire
surface. Clearly more research is needed in this area.

3. A BLOBTREE MAPPING NODE

The texturing algorithm described in the previous section
applies texture globally onto the surface. In the case
of the BlobTree the total surface is the result of the
composition of the child nodes of the hierarchy. In order
to incorporate the texturing algorithm into the BlobTree
a new node type is defined. This node is identical to
the standard blending group, figure 3, with the exception
that it provides a 2D parameterization for the surface
defined by its children. This node must take into account
the sibling relationship of its child nodes in the hierarchy.
This means that the texturing algorithm must be modified
to provide appropriate mapping across the blends of
the nodes for which the mapping is being computed.
There are three cases to consider: blending, warping
and CSG. We include an overview of the BlobTree
traversal algorithm for completeness, refer to [9] for a
full discussion.

Function F (N ;M):

1. Primitive: F (M).

2. Warp: F (L(N); w(M)).

3. Blend: F (L(N);M) + F (R(N);M))

4. Union: max(F (L(N);M); F (R(N);M))

5. Intersection: min(F (L(N);M); F (R(N);M))

6. Difference: min(F (L(N);M);�F (R(N);M))

Figure 6: Traversal algorithm for the BlobTree data
structure.

Where L, R return the left and right nodes of N
respectively. Note that in our actual implementation
nodes are n-ary rather than binary.

3.1. Blending

The surface attributes for a point on the surface which
results from a blend node, are derived from the surface
attributes of the child nodes. Typically the contribution
from a single child node Ni to the surface at some point
M, is weighted by the field value for the child at that
point F (Ni;M).

We can use the same method for blending of texture
values. We trace a particle from the point with respect

to each primitive to a support surface which bounds that
primitive. This will produce a texture space coordinate
and colour for that primitive which can be blended with
the sibling values. As pointed out in [14] this can cause
possibly undesirable artifacts, where textures are layered
on top of each other (see figure 7 left). Instead it was
suggested in their paper to blend the support surfaces
and trace one particle in the blended area to that average
support surface. The two methods are shown in figure 7,

Figure 7: Comparison of texture combination over
implicit blends; left: standard weighting, right: support
surface blending.

and discussed fully in [14], that work should be consulted
for complete detail. In the case where the support surface
is blended, the texturing in the blended area becomes
very distorted. It would be possible to use the application
of a sigmoid function to the weighting value to reduce
the area of texture distortion.

3.2. Warping

Warping of the field function in the BlobTree is
accomplished through the use of the Barr warps [1, 9]
(although other warp functions have also been used).
These functions w : R ! R provide a mapping which
can cause twist, taper and bend of the surface. Figure 8
illustrates how the computed 2D mapping is affected
by the spatial warp applied to the field. The warps
we currently use do not cause a discontinuity in the
gradient of the field defining the surface so there is no
discontinuity in the 2D mapping. However the gradient
is subject to the spatial warp so that particle trajectories
following this field cause the 2D mapping to follow the
surface. The effect is that the mapping appears as if

Figure 8: Response of a texture map to warped space.

it was applied to the surface before warp was applied.
This is partly a desireable effect but it may be that the
preference is for the texture to not react to the warp. This
is an as yet unexplored area. The most logical solution
for future work would be to apply the inverse of the warp
function after the trajectory calculation is complete and
use the unwarped point to compute the mapping.

3.3. CSG Boolean Operations

Texture mapping across CSG junctions with the
algorithm described in section 2 presents a special
problem. The algorithm is heavily reliant on the gradient
of the scalar field defining the surface. This causes
the algorithm to fail when the gradient is not defined
or contains a discontinuity. Boolean operations can
introduce discontinuities in the gradient. The net result is
that closely spaced particles on the surface are traced in
different directions and hence yield texture coordinates
which cause a discontinuity in the mapping. The problem
is illustrated in figure 9, at the junction in the bottom
image R is not defined and particles could go in one
of two orthogonal directions. One solution is to avoid
the problem by not assigning the gradient of the scalar
field to the repulsion force R. Instead we assign to R
a normalized direction vector which is dependent on the
type of the node,N , as

R =

8<
:

Ψ(Ni) if N is blendP
Ri � F̂ (Ni;Mt) if N is csg
rF (N ;Mt) if N o/w

F̂ (Ni;Mt) = 1� kL�min(F (Ni;Mt); F (N ;Mt))k

Surface

R

Child
surface

1 − L − min(F(N ,P), F(N,P)) i

Surface

R

Child
surface

 F(P)

∆

Figure 9: Computation of R with CSG junctions; top:
R = rF (N ;M), bottom: F̂ used to weight the child
Ri.

Where Ψ returns the weighted average of the direction
vectors of the child nodes, Ni, in the same manner as
used for computing normals of blended nodes [9]. N
is the current node, Ri is the direction vector for the
ith primitive, F (N ;M) is the field value for nodeN at
pointM andL is the iso-value for the level surface being
used.

When a node is a Boolean operation,R is computed
as the normalization of the weighted sum of the
child Ri vectors with F̂ used for the weight. This
function is meant to produce a weighted average of
the child Ri vectors, however we must ensure that
we do not contribute more from a child than is being
contributed by the actual CSG surface. Consider figure
9, these diagrams show a particle leaving the flat surface
produced by the intersection of a plane and a sphere.
In the top figure F̂ is used to weight the contribution
of the Ri of the child nodes. The definition of this
function ensures that the child surfaces do not contribute

Figure 10: Texture space discontinuity across a CSG
intersection.

Figure 11: Continuous texture mapping over a CSG
intersection.

more than the value of the field function for the entire
surface at the current point. In the bottom figure, R is
computed directly as the gradient for the whole surface
rF (N ;M), as shown in the figure the discontinuity
causes very different trajectories. F̂ ensures that the
change in the initial direction of particles leaving the
surface is continuous. Figure 11 illustrates the use
of the new R in computing particle trajectories for the
mapping. In figure 10, the misalignment in the checks
across the gradient discontinuity (CSG junction) shows
the discontinuity in the 2D mapping. In comparison of
the two figures it is easy to notice the improvement in
the alignment of the checkers across the CSG junctions.
It should be noted that the same function for the
computation of R is used for all Boolean operations:
union, difference and intersection.

4. CONCLUSIONS

We have introduced some new techniques for 2D texture
mapping of implicit surfaces. Our methods extend the
recently introduced algorithm of Zonenschein et al. [13]
to be of practical use in an implicit surface system which
includes CSG operations and warping. Our method
introduces new control mechanisms over the trajectory
of particles which are traced from the iso-surface to a
support surface.

We have implemented both a polygonizer and a ray

tracer for the BlobTree. Although we have not yet done
any exhaustive testing, we have ray traced a number of
models with and without texturing. The particle tracing
adds approximately %40 to the time it takes to produce
a ray traced image of the untextured primitives.

One of the main advantages of using skeletal implicit
models is that blending between parts of the model
is automatic. The blended areas can be thought of
as a distortion of the original primitives. Our texture
technique also produces distorted textures in these
areas which may or may not be considered desirable.
Future work will address the problem of computing
mappings which allow the user better control over these
distortions. We will also examine the problem of
designing interactive tools for positioning the support
surface to produce desired texturing in an interactive
implicit modeling system.

5. REFERENCES

[1] Alan H. Barr. Global and local deformations
of solid primitives. In Hank Christiansen,
editor, Computer Graphics (SIGGRAPH ’84
Proceedings), volume 18, pages 21–30, July 1984.

[2] James F. Blinn. Texture and reflection in
computer generated images. CACM, 19(10):542–
547, October 1976.

[3] Jules Bloomenthal, editor. Introduction to Implicit
Surfaces. Morgan Kaufmann, July 1997.

[4] Zoran Kacic-Alesic and Brian Wyvill. Controlled
Blending of Procedural Implicit Surfaces. Proc.
Graphics Interface 1991, pages 236–245, 1991.

[5] H. Nishimura, M. Hirai, T. Kawai, T. Kawata,
I. Shirakawa, and K. Omura. Object modeling
by distribution function and a method of image
generation. Trans. IECE Japan, Part D, J68-
D(4):718–725, 1985.

[6] Jean-Paul Smets-Solanes. Vector field based
texture mapping of animated implicit objects.
In Eurographics ’96 Conference Proceedings.
Eurographics, 1996.

[7] Andrew P. Witkin and Paul S. Heckbert. Using
particles to sample and control implicit surfaces.
In Andrew Glassner, editor, Proceedings of SIG-
GRAPH ’94, pages 269–278. ACM SIGGRAPH,
ACM Press, July 1994.

[8] Brian Wyvill. Animation and Special Effects.
Introduction to Implicit Surfaces, pages 101–104,
1997. Edited by Jules Bloomenthal With Chandrajit
Bajaj, Jim Blinn, Marie-Paule Cani-Gascuel, Alyn
Rockwood, Brian Wyvill, and Geoff Wyvill.

[9] Brian Wyvill, Eric Galin, and Andrew Guy.
The blob tree, warping, blending and boolean
operations in an implicit surface modeling system.
Technical Report 98/618/09, The University of
Calgary, Dept. of Computer Science, 1997.

[10] Brian Wyvill, Craig McPheeters, and Geoff Wyvill.
Data structure for soft objects. The Visual
Computer, 2(4):227–234, 1986.

[11] Brian Wyvill and Kees van Overveld. Warping as
a modelling tool for csg/implicit models. In Shape
Modelling Conference, University of Aizu, Japan,
pages 205–214. IEEE Society Press ISBN 0-8186-
7867-4, March 1997. inivited.

[12] G. Wyvill, B. Wyvill, and C. McPheeters. Solid
texturing of soft objects. IEEE Computer Graphics
and Applications, 7(12):20–26, December 1987.

[13] R. Zonenschein, J. Gomes, L. Velho, and L. H.
Figueiredo. Texturing implicit surfaces with
particle systems. In Technical Sketch in Visual
Proceedings SIGGRAPH 1997, page 172, August
1997.

[14] Ruben Zonenschein, Jonas Gomes, Luiz Velho,
Luiz Henrique de Figueiredo, Brian Wyvill, and
Mark Tigges. Texturing composite implicit objects
with moving parts. Technical Report 98/617/08,
University of Calgary, Dept. of Computer Science,
1998.

