
Ben Stephenson

Department of Computer Science

University of Calgary

ben.stephenson@ucalgary.ca

Because recursion is generally introduced early in the curricu-
lum, the range of problems that can be used to motivate its
study is limited. We describe three interesting visual problems
that use recursion effectively. Each problem demonstrates the
utility of recursion in an engaging way while being appropriate
for students nearing the end of CS1.

Solving problems recursively requires students to expand the
way that they look at problems. Students often resist this
change, in part, because they see few practical reasons for us-
ing recursion. We believe that this is partly a reflection of the
traditional examples that we have used to teach recursion. As
such, we have revised our course materials to include examples
designed to meet three goals:

The problem being solved must be
at least as easy to solve using recursion as it is to solve using
imperative control structures.

The problem under consideration should serve
some practical purpose.

The problem being solved should be interesting
to the students who are being taught.

Our traditional examples failed to meet some, or all, of the
goals listed previously. In our experience, the examples we
used often left students with the mistaken impression that re-
cursion isn’t very useful, or that it is too inefficient to solve
interesting problems.

• Simple recursive definition

• Students are already familiar with the problem

• Using a loop is just as easy (perhaps easier)

• Problem is not very interesting

• Recursive solution is simpler than the iterative solution

• Demonstrates the concept of multiple base cases

• Recursive solution is too inefficient for even modest values

• Who wants to compute Fibonacci numbers?

• Can be demonstrated with physical props / animation

• Students recognize that the problem is contrived

Fractal images are self-similar, meaning that each part of the
image is a smaller version of the whole. As such, fractal im-
ages often have relatively simple recursive definitions.

The Fractal T-Square is constructed by repeatedly drawing a
square in the center of a square region. It can be generated
using about a dozen lines of Python code.

def tsquare (x,y,w,h):
if (w < 4) or (h < 4): return

print "color",0,(x+256)/2,(y+256)/2
print "fillrect", x + w/4.0, y+h/4.0, \

w/2.0-1, h/2.0 -1

tsquare (x,y,w/2.0,h/2.0)
tsquare (x+w/2.0,y,w/2.0,h/2.0)
tsquare (x,y+h/2.0,w/2.0,h/2.0)
tsquare (x+w/2.0,y+h/2.0,w/2,h/2.0)

print "color 255 255 255"
print "clear"
tsquare (0 ,0 ,256 ,256)

The Hilbert Curve is defined by a pair of mutually recursive
equations:

R(0) = do nothing
R(k > 0) = - L(k-1) F + R(k-1) F R(k-1) + F L(k-1) -

L(0) = do nothing
L(k > 0) = + R(k-1) F - L(k-1) F L(k-1) - F R(k-1) +

Within these definitions, ‘+’ denotes
a 90 degree left turn, ‘-’ denotes a 90
degree right turn, and F denotes draw-
ing a forward line segment one unit in
length. Using a turtle graphics pack-
age makes it relatively easy to repre-
sent these equations as a pair of recur-
sive functions which draw the Hilbert
Curve.

Drawing fractals iteratively requires
a stack or a queue. Our students are not introduced to these
data structures in CS1.

While simple fractals have limited value as art,
beautiful fractal artwork has been created. In addition, frac-
tals can be used for practical purposes such as artificial terrain
generation.

While fractals are quite mathematical in nature,
most students seemed to enjoy working with them. We believe
this was partially because of their visual nature. In addition,
fractals were something that some students had heard of pre-
viously but had never had the opportunity to study.

The floodfill algorithm is used to change a region of arbitrary
shape within an image from one color to another.

•For the pixel at location (x,y)

– If the pixel is currently the color that is to be changed
∗Use recursion to change pixels starting from one pixel

above the current pixel
∗Use three additional recursive calls to change pixels

starting one pixel left, one pixel right and one pixel be-
low the current pixel

Most students found the floodfill algorithm more difficult to
implement than drawing the Fractal T-Square. While drawing
the fractal provided students with visual feedback each time
a recursive call was made, they did not receive the same kind
of feedback when implementing floodfill because they were
modifying an image in memory rather than drawing directly
to the screen.

Our students were engaged by this problem because it allowed
them to implement a tool that they had used in various paint
programs. Several students expressed interest in optimizing
the algorithm, further suggesting that they found this prob-
lem relevant and engaging.

Two dimensional arrays / lists are an intuitive representation
for a maze. Within the list, each element can represent:

•Filled regions which cannot be passed through

•Open spaces where a person can walk

In addition, one element is marked as the entrance, and an-
other is marked as the exit.

Students wrote a program to find a path through a maze
as their final assignment in CS1. They represented filled and
open areas using different colored squares. Then they updated
the display to show that progress was being made toward the
solution. Their animation marked squares that were along
the path from the entrance to the exit, and squares that were
visited but were not ultimately part of the solution.

Students were given the opportunity to animate the solution
in three dimensions. Even with a high level library, this added
significant complexity without reinforcing the concept of re-
cursion. Only one student completed this optional challenge.

Using visual examples while teaching recursion helped us ef-
fectively demonstrate the utility and relevance of recursion
in an engaging manner. Based on our student’s behavior, we
strongly believe that we were successful in motivating students
to study recursion while also successfully addressing miscon-
ceptions such as “anything done recursively is just as easily
done with a loop” and “recursion is too slow to be practical
for real problems”.


