
An Efficient Algorithm for Identifying the Most
Contributory Substring

Ben Stephenson

Department of Computer Science, Room 355 Middlesex College, University of
Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7,

ben@csd.uwo.ca

Abstract. Detecting repeated portions of strings has important appli-
cations to many areas of study including data compression and com-
putational biology. This paper defines and presents a solution for the
Most Contributory Substring Problem, which identifies the single sub-
string that represents the largest proportion of the characters within a
set of strings. We show that a solution to the problem can be achieved
with an O(n) running time (where n is the total number of characters in
all of the input strings) when overlapping occurrences of the most con-
tributory substring are permitted. Furthermore, we present an extended
algorithm that does not permit occurrences of the most contributory sub-
string to overlap. The expected running time of the extended algorithm
is O(n log n) while its worst case performance is O(n2).

1 Introduction
This paper considers the problem of determining the most contributory substring
of a set of strings. We define the most contributory substring to be the string
of characters w such that the number of occurrences of w times its length, |w|,
is maximal. Put another way, the most contributory substring is the string w
such that removing all occurrences of w from the set of strings reduces the size
of the set by the greatest number of characters. Being able to identify the most
contributory substring is useful because it can aid in pattern matching tasks
such as analyzing profile data and identifying strings that should be replaced
with short code words in compression algorithms.

The remainder of this paper is organized in the following manner. Sections 2
and 3 outline related problems and define the terms used in the remainder of the
paper. Our initial algorithm is presented in 4. It is followed by an extended ver-
sion of the algorithm which ignores overlapping substrings in Section 5. Section
6 discusses applications for this algorithm. We briefly identify areas of future
work and summarize in Section 7.

2 Related Work
The most contributory substring problem is related to two other well known
problems: the Longest (or Greatest) Common Substring Problem and the All
Maximal Repeats Problem (AMRP). However it is distinct from each of these.

While the Longest Common Substring Problem identifies the longest sub-
string common across all strings in a set, the Most Contributory Substring Prob-
lem identifies the string that contributes the greatest number of characters. One
important distinction between these problems is that there is no guarantee that
the most contributory substring will occur in every string in the set while the
longest common substring will. The longest common substring problem also ig-
nores multiple occurrences of the same substring within each string in the set
while the Most Contributory Substring Problem counts every occurrence.

A variation on the Longest Common Substring Problem has also been pre-
sented [4] that identifies the longest common substring to k strings in a set. This
problem is also distinct from the Most Contributory Substring Problem because
it fails to consider the value of multiple occurrences of a substring within one
string in the input set.

The All Maximal Repeats Problem identifies occurrences of identical sub-
strings α and β in a string s such that the characters to the immediate left
and right of α are district from the characters to the immediate left and right
of β. In contrast, the Most Contributory Substring Problem is concerned with
identifying strings that occur many times. Each occurrence of the string may or
may not have distinct characters to its immediate left and right.

3 Definitions

A substring w of a string s is defined to be a string for which there exist strings
(possibly empty) p and q such that s = pwq. A suffix, w of a string s is defined to
be a non empty string meeting the constraint s = pw for some (possibly empty)
string p.

Let L represent the set of m strings under consideration. We will denote a
specific string within the set as Li such that 0 ≤ i < m. Let Σ0...Σm−1 represent
the alphabet employed by each of the m strings in L. The alphabet used across
all strings is constructed as Σ0 ∪ ... ∪Σm−1 and will be denoted by Σ.

A generalized suffix tree is a data structure constructed from a collection
of strings. An equivalent tree can be constructed for a single string that is the
concatenation of all of the strings in the set provided that a unique sentinel
character is placed after each string. The set of sentinel characters is denoted by
S. In our examples we will represent sentinel characters with the punctuation
marks # and $. We will use the symbol s to represent the string generated by
concatenating the strings in L with a distinct sentinel character between each
string. Because a sentinel character is introduced after each input string during
the construction of s, |L| is equal to |S|.

Several linear time and space suffix tree construction algorithms have been
developed [6, 7, 8, 9] for alphabets that are a small, constant size compared to
the length of the input string. Another algorithm was developed subsequently
that provided the ability to construct a suffix tree in linear time and space over
integer alphabets [3]. Assuming that the string ends in a sentinel character, the
following properties hold for a suffix tree independent of the algorithm used to
construct it:

1. The tree contains n leaves where each leaf corresponds to one of the n suffixes
of a string of length n.

2. Each branch in the tree is labeled with one or more characters from the
string. The label is represented by two integers which specify the starting
and ending position as indices in the concatenated string. Collecting the
characters as one traverses from the root of the tree to a leaf will give one
of the suffixes of the string.

3. The first character on each branch leaving a node is distinct. As a result, no
node has more than |Σ|+ |S| children.

4. Each non-leaf node has a minimum of two children.
5. The string depth of a leaf node is the length of the suffix of s represented by

that node. The string depth of an interior node is the length of the prefix
that is common to all of the suffixes represented by leaf nodes below it.

Figure 1 shows a suffix tree constructed for the strings ababab and abab after
they have been merged into a single string and the sentinel characters have been
added. The suffix generated by traversing the tree is shown in each leaf node.

Fig. 1. Suffix Tree for the string ababab$abab#

4 Initial Algorithm

This section presents an initial algorithm for solving the most contributory sub-
string problem which permits overlapping occurrences of the identified string.
It is subsequently extended to consider only non-overlapping occurrences of the
most contributory substring in Section 5.

Our algorithm for determining the most contributory substring begins by
creating a suffix tree for s using one of the linear time construction algorithms
published previously. Once the suffix tree is constructed it is transformed so
that all of the strings in L are represented by an interior node, and so that all
strings containing a sentinel character are represented by a leaf node. Any string
containing a sentinel character occurs due to the construction of s. Consequently,

the identification process can disregard any string represented by a leaf node
while ensuring that every substring of a string in L is considered. The following
steps are taken to transform the tree to meet these constraints:

– Any leaf node that is reached by a branch label that begins with a sentinel
character is left untouched.

– Any leaf node that is reached by a branch labeled with a string that begins
with a letter in Σ is split into two nodes. A new interior node with only one
child is inserted between the leaf and its parent. The branch to the new node
is labeled with all characters before the first sentinel character in the original
branch label. The branch from the new node to the leaf node is labeled with
the remaining characters.

Once this transformation has been performed the number of nodes in the
tree has increased by at most n, retaining a total number of nodes that is O(n).
The algorithm employed is shown in Figure 2. The effect of this transformation
can be seen in the bottom-most nodes in Figure 3.

The SplitLeaves transformation can be performed in O(n log |S|) time if the
positions of the sentinel characters are recorded when the concatenated string
is formed. Then finding the position of the first sentinel character can be imple-
mented as a binary search for the first value in the sentinel character position
list that is greater than the starting index of branch b. This strategy requires
O(s) additional space to store the list of sentinel characters.

An alternative strategy is to build a table which maps each position in s
to the position of the next sentinel character. This table can be constructed
in linear time during the construction of s and requires additional space that
is O(n). With this table, finding the position of the first sentinel character in
the label be can be accomplished in constant time. This results in overall time
complexity for SplitLeaves which is O(n). Which of these strategies is superior
depends on the size of S and the trade-off between space and time costs for the
specific context in which the algorithm is employed.

A depth first traversal of the tree is performed once the leaf nodes have been
split. This traversal assigns a score to each node, determined by computing the
product of the string depth of the node and the number of leaf nodes below
it. Depending on the application, this score can be recorded in the node and
utilized later or two variables can be used to record the best string and score
encountered so far.

Figure 3 shows Figure 1 after scoring has been completed. It shows the values
used to compute the score in addition to the score awarded for each node. From
this diagram we can see that the node corresponding to the string abab received
the highest score with the value 12. As a result, we would conclude that the
string abab is the most contributory substring for the input strings ababab and
abab. The occurrences of the string are indicated below using underlining and
over-lining.

ababab$abab#

Algorithm SplitLeaves(node n)

For each branch, b, leaving n

If the node, m, at the end of b is a leaf and the label on b starts with a

character in Sigma

Create a new node, p

Create a branch, c, from p to m

Change the target of branch b to node p

Find the position, x, of the first sentinel character in the label on b

Label c with all characters from x to the end of the string

Change the label on b so that it only includes those characters before x

Else

SplitLeaves(b.Target)

End For

Fig. 2. Algorithm SplitLeaves

Fig. 3. Suffix Tree for the string ababab$abab# Including Scores

5 Handling Overlapping Occurrences

It is important to observe that the single underlined and single over-lined occur-
rences of abab are overlapping. While this may not be a problem in some situa-
tions, any application that ‘uses up’ the string once it is identified will destroy
the subsequent overlapping occurrence(s). Consequently the current identifica-
tion technique will over estimate the value of some strings if overlapping should
be prohibited. This section extends the preceding algorithm so that it detects
and ignores overlapping occurrences of the string.

Two occurrences of a substring are known to overlap if the absolute value of
the difference in their starting positions within s is less than the length of the
substring. We annotate each interior node in the tree with the score based on
the number of non-overlapping occurrences of the substring represented by the
node using the depth first traversal algorithm shown in Figure 4.

During this traversal, a balanced binary search tree is constructed for each
node in the suffix tree. It contains the starting indexes of the substring rep-
resented by the node in the suffix tree. For leaf nodes, the binary search tree
consists of a single node. At each interior node, the balanced binary search trees
from its children are merged to form a new larger tree. Each tree from a child is
merged in sequence, with the smaller trees being merged into the largest tree.

In the pathological case where the height of the suffix tree is n, the amount of
time required to merge the binary search trees is O(log n) for each level in the tree
because only one new node is merged, giving an overall complexity of O(n log n).
A similar situation results in the pathological case where n = |Σ|+ |L|. In this
case, the height of the suffix tree is 1, but n leaf nodes must be merged into the
tree at a cost that is O(log n) for each merge. As a result, this case also has a
complexity which is O(n log n).

A myriad of suffix trees exist with heights between the pathological cases
described in the previous paragraph. However, the amount of time required to
construct the balanced binary search trees is also O(n log n) for these cases. The
number of merges is minimized by merging the smaller trees into the largest tree
at each merge point, resulting in each merge still having a cost that is O(log n).
Due to the construction of a suffix tree, it is known that the size of the largest
binary search tree will grow by at least one at each level in the tree (since each
interior node in the suffix tree has at least two children except for the split leaf
nodes). When the binary search tree grows by only one element at each level, the
tree has height n and the overall time required to build the binary search trees
is O(n log n) as described previously. If the size of the largest binary search tree
grows by more than 1 at any point, then the height of the suffix tree is known
to be less than n. In fact, if the increase in size of the largest binary search
tree is denoted by ∆j at level j then the maximum height of the suffix tree is
n−

∑
(∆j − 1), where

∑
indicates summation in this instance. While any level

that has a value of ∆i that is greater than 1 requires multiple merges that each
cost O(log n), the additional merges performed at that level are offset by the
decreased height of the tree, resulting in an overall running time that remains
O(n log n).

Algorithm NonOverlappingScore(node n)

ChildTrees: an array of pointers to binary search trees

Retval: a pointer to a balanced binary search tree

If n.NumChildren == 0 // it’s a leaf node

Retval = new binary search tree with one node

Set the value in Retval’s root node to |s| - n.StringDepth

Return Retval

End If

Allocate n.NumChildren pointers for ChildTrees // Proceed depth first

For i = 0 to n.NumChildren - 1 // through the suffix tree

ChildTrees[i] = NonOverlappingScore(n.Child[i])

End For

For i = 1 to n.NumChildren - 1 // Ensure ChildTrees[0] points to largest tree

If ChildTrees[0].num_nodes < ChildTrees[i].num_nodes

swap(ChildTrees[0], ChildTrees[n])

End If

End For

Retval = ChildTrees[0]

For i = 1 to n.NumChildren - 1 Retval = BSTreeMerge(Retval, ChildTrees[i])

n.Score = CountUniqueOccurrences(Retval,n.StringDepth) * n.StringDepth

Deallocate the binary tree for each child and the ChildTrees array

return Retval

Fig. 4. Algorithm NonOverlappingScore

Algorithm CountUniqueOccurrences(BinarySearchTree t, Integer str_len)

count = 0 // number of non-overlapping occurrences

last_position = MIN_INT // last_position is initialized to the

// negative value of largest magnitude

InOrderTraversal(t.root, count, last_position)

return count

Algorithm InOrderTraversal(BSTNode b, Ref Integer count,

Ref Integer last_position)

If (b.left != NULL) InOrderTraversal(b.left, count, last_position)

If ((last_position + str_len) <= b.value)

count++

last_position = b.value

End If

If (b.right != NULL) InOrderTraversal(b.right, count, last_position)

Fig. 5. Algorithm CountUniqueOccurrences

Once the binary search tree for a node is constructed, it is traversed us-
ing algorithm CountUniqueOccurrences, shown in Figure 5. This algorithm is
responsible for determining if two or more of the occurrences of the substring
represented by suffix tree node n overlap. This is accomplished by traversing the
balanced binary search tree using an in-order traversal, counting only those nodes
whose value differs by at least length. This value is returned to the NonOver-
lappingScore algorithm, which uses it to compute the score for the node.

Since each starting position can only exist in one binary search tree at each
level in the suffix tree, the total time required to traverse all of the binary search
trees at a level is O(n). Unfortunately, this leads to worst case running time for
CountUniqueOccurrences which is O(n2) in those rare cases when the height of
the suffix tree approaches n. Studies have been conducted that show, contrary
to the worst case height, the expected height of a suffix tree is O(log n) [1, 2, 5].
Consequently, while it is possible that CountUniqueOccurrences may cause the
overall running time of NonOverlappingScore to reach O(n2), its expected per-
formance should not exceed the O(n log n) performance of CountUniqueOccur-
rences. This expected performance exceeds the cost associated with constructing
the suffix tree initially (O(n)), and splitting its leaf nodes (O(n log |S|)). Thus we
conclude that the overall cost of determining the Most Contributory Substring
when overlapping occurrences are prohibited is O(n2) in the worst case, with an
expected performance of O(n log n).

The NonOverlappingScore algorithm is O(n) in space. In a degenerate suffix
tree with height n, it is necessary to allocate the ChildTrees array for every level
in the tree before any call to NonOverlappingScore returns. Initially, this may
appear to require O((|Σ|+ |L|)n) space. However, it is impossible for every node
in the tree to to have |Σ| + |L| children unless |Σ| + |L| is three or less. This
constraint exists because the total number of nodes in the modified suffix tree is
bounded by 3n. Thus, even if we must allocate space to hold a pointer to every
child’s tree before any calls to NonOverlappingScore return, the total amount of
space allocated with still be 3n pointers or less.

The amount of space required to store the binary trees used to identify the
unique occurrences is also O(n). The total number of nodes in the binary trees at
any level in the suffix tree is bounded by n. Furthermore, binary trees only exist
at two levels in the suffix tree at any time. Once the binary tree for the current
node in the suffix tree is constructed, the binary trees for all of its children are
deallocated. This means that a total of no more than 2n nodes will be present
in the binary trees before the children’s binary trees are deallocated, giving a
space requirement that is O(n).

After algorithm NonOverlappingScore executes the number of disjoint occur-
rences of each substring has been determined and the resulting score has been
computed. Figure 6 shows the tree after scoring has been performed using the
NonOverlappingOccurrences algorithm. It shows that the best substring is ab
with a score of 10 – a different result than the abab achieved when overlapping
strings were permitted.

Fig. 6. Suffix tree for the string ababab$abab# Including Score Computed Using Only
Non-Overlapping Occurrences

6 Applications
This algorithm was originally developed to analyze profile data collected during
the execution of an application. The profile data consisted of approximately 200
distinct events which occurred millions of times. While determining which dis-
tinct event occurred with greatest frequency was straightforward, determining
which sequence of events contributed the most to the execution of the application
was more challenging. Analyzing this data using an inefficient algorithm took
a prohibitively large amount time. As a result, the most contributory substring
problem was identified and solved. Using the solution to the most contribu-
tory substring problem made it possible to quickly identify what sequence or
sequences of events contributed the most to the execution of the application.

We also believe that using this algorithm can improve the level of compression
achieved by Huffman coding. In its simplest form, Huffman coding uses variable
length bit sequences to represent each symbol. Shorter sequences of bits are
used to represent those symbols that occur with greater frequency while longer
sequences are used to represent symbols that occur less frequently.

A variation on Huffman coding has also been developed which considers fixed
length groups such as 2 symbols at a time. The frequency of each sequence of 2
symbols is determined and bit sequences are assigned based on the frequencies
of the sequences. Using the most contributory substring algorithm can extend
this idea further by using variable length sequences. The most contributory sub-
string can be identified repeatedly in order to determine what sequence (possibly
consisting of only one symbol) represents the largest portion of the string be-

ing compressed. This sequence would then be encoded using the shortest code
word. Using this strategy degenerates to standard Huffman encoding when each
most contributory substring identified has length one. We have yet to implement
this variation of Huffman coding, so we are presently unsure how much of an
improvement is achieved for real data sets.

Other applications for this algorithm may also exist. In particular, we believe
that it may have utility in the realm of computational biology.

7 Conclusion

An algorithm is presented which solves the Most Contributory Substring Prob-
lem. This problem identifies a substring of its input that represents the largest
proportion of the characters in the input string. In its first presentation, the al-
gorithm identified potentially overlapping occurrences of the most contributory
substring in a running time that was O(n). An extended version of the algo-
rithm was also presented that discounted overlapping occurrences of the most
contributory substring. While the extended algorithm may require a running
time as large as O(n2) for pathological input cases, previous studies have shown
the expected height of a suffix tree is O(log n) rather than O(n), reducing the
complexity of the Most Contributory Substring Algorithm to O(n log n) in the
expected case.

While our algorithm gives an optimal result when one substring is identified,
it does not necessarily give an optimal result when applied iteratively to identify
the k most contributory substrings of s. We hope to extend our algorithm to
efficiently solve this problem in the future.

References

[1] A. Apostolico and W. Szpankowski. Self-alignments in words and their applications.
J. Algorithms, 13(3):446–467, 1992.

[2] L. Devroye, W. Szpankowski, and B. Rais. A note on the height of suffix trees.
SIAM J. Comput., 21(1):48–53, 1992.

[3] M. Farach. Optimal suffix tree construction with large alphabets. In FOCS ’97:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS ’97), page 137, Washington, DC, USA, 1997. IEEE Computer Society.

[4] D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York, NY, USA, 1997.

[5] P. Jacquet and W. Szpankowski. Autocorrelation on words and its applications:
Analysis of suffix trees by string-ruler approach. JCTA: Journal of Combinatorial
Theory, Series A, 66, 1994.

[6] E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976.

[7] E. Ukkonen. Constructing suffix trees on-line in linear time. In Proceedings of
the IFIP 12th World Computer Congress on Algorithms, Software, Architecture -
Information Processing ’92, Volume 1, pages 484–492. North-Holland, 1992.

[8] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

[9] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE
Symp on Switching and Automata Theory, pages 1–11, 1973.

