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1 Introduction

One of the recurring topics in the Python community is how to make Python pro-
grams run faster. Typically, a set of solutions is proposed which include: adding
static type inference; somehow compiling programs into native code; translat-
ing Python programs into Parrot/Lisp/.net code; applying research results from
dynamically-typed language implementation. Progress has been made on some
of these, such as Psyco [8], but many of these proposed solutions are qualified
by the caveat no one has the time/resources to work on it.

In the Programming Languages Lab at the University of Calgary we have a
research project underway, UCPy, whose short-term goal is to examine ways we
can make Python run faster. We have learned some lessons through our design
and implementation work to date, about both Python and the undertaking of
such a project, which we present in this paper.

2 Design of UCPy

‘If you have four groups working on a compiler, you’ll get a 4-pass
compiler.’ — statement of Conway’s Law [2]

In deference to the above quote, UCPy is divided into three parts: a com-
piler, an assembler/linker, and a virtual machine. This division was in part
for nontechnical reasons — compiler implementation was initially proceeding in
parallel with virtual machine design — but also had some practical benefits. The
compiler was much easier to debug with a human-readable assembly language
output, and the virtual machine had been tested using assembly inputs prior to
the compiler emitting code.

Currently, the individual parts are not combined into one integrated exe-
cutable unit, so Python’s exec and eval statements (which require the compiler
to be present at run time) are not supported yet.



2.1 The Python Compiler: ucpc

Ucpc is written in C, using the standard compiler tools flex and bison [4]. This
is in contrast to the CPython compiler, which uses a weaker type of parser
generated by a parser generator distributed with Python. This difference alone
has led to some interesting discoveries about the Python grammar, which we
discuss in the next section.

The compiler constructs a representation of the whole module being compiled
as an abstract syntax tree (AST). Each AST node has at most two children,
and this binary representation makes it amenable for use with the tree pattern-
matching tool burg [3], by which we find a tree covering and generate code for
the AST.

Eventually, we intend to turn ucpc into a retargetable compiler, and have a
back end that generates code for the CPython virtual machine too.

2.2 The Assembler/Linker: pyas

The combined assembler and linker is written in Python, using the SPARK
toolkit [1]. It consists of just under 1100 lines of code, about 23% of which is
for emitting the binary format that the virtual machine requires.

The assembly output from ucpc is essentially a collection of objects, such as
code objects, strings, integers, and floats, some of which have references to one
another. For example, a code object may make references to a number of string
and integer objects. Pyas, as it assembles the code, determines the dependencies
between objects so it may link them accordingly; unused objects are discarded.

As an assembler, pyas performs a number of bookkeeping tasks such as
calculating the contents of tables for exception handling and mapping virtual
machine addresses into source line numbers, which greatly simplify the task of
the compiler.

2.3 The Virtual Machine: mamba

Our new virtual machine for Python is hand-written in C, to allow fair timing
comparisons between it and CPython. It is a register-based virtual machine as
opposed to the stack-based architecture used in CPython, and a minimal one at
that: mamba has 19 instructions compared to CPython’s 103 instructions. The
full architectural details of mamba are outside the scope of this paper, but are
described fully in [6].

Mamba is intended as a framework for optimization experiments, and has
features to facilitate this, most notably a generic framework for garbage collec-
tion. Currently, we have four different collectors which may be chosen when the
virtual machine is compiled: a “null” collector which never reclaims garbage;
a reference-counting collector; a mark-sweep collector; a collector with a new
algorithm that dynamically infers memory regions [5].

We expect to have enough functionality in mamba to allow running a full
suite of microbenchmarks within the next few months.



3 Reverse-Engineering Lessons

Reverse-engineering an established programming language is a major endeavor,
even if the language were not rapidly evolving. However, Python is in a constant
state of flux, and we have had to set limits on the feature set just to make the
scope of UCPy achievable. We are targeting the functionality of Python 1.5.2
officially, at least in the virtual machine, although the compiler is capable of
handling most Python constructs up to version 2.x. Unofficially, the “creeping
feature creature” has been hard at work, and mamba accepts rich comparisons
and list comprehensions among other things.

A particular problem has been the vast number of built-in modules and
functions that Python has. The “batteries included” philosophy of Python is a
labor-intensive one to duplicate when building a new system from scratch, and
we have consequently adopted a lazy approach — in the technical sense of the
term — to adding necessary functionality.

In the remainder of this paper, we present details of what we have learned
about the nooks and crannies of Python as a result of building UCPy, including
a look at Python’s design from a minimalist re-implementation point of view.

3.1 Lessons from Grammar School

In our compiler, we use bison to generate the parser. The form of grammar that
bison uses as input is equivalent to, but slightly different from, the grammar
specification allowed by Python’s parser generator tool.! We therefore had to
convert the grammar from one form to the other.

Bison’s checking of grammars is more stringent than Python’s parser gen-
erator, however, and having performed the grammar conversion we found two
ambiguities in the Python grammar. Ambiguities are a problem in programming
languages, just as they are in natural languages like English, because users ex-
pect their program to have a unique interpretation. We verified each ambiguity
in the original grammar, to ensure that we had not made an error in translation.

The first ambiguity was with the following two grammar rules:

factor: (°+’|°-’|’7?) factor | power
power: atom trailerx (’*x’ factor)x*

Essentially, a power can end with zero or more instances of a ** followed by a
factor. However, a factor can itself be a power. This means that, for input
such as

123 ** 123 *x 123

there are two ways to interpret this, according to the grammar. By changing
the grammar rules, so that the ** and factor were optional but could not be
repeated, fixed this ambiguity:

ISpecifically, bison doesn’t allow EBNF constructs.



factor: (°+’|°-’|’7?) factor | power
power: atom trailer* [’*x’ factor]

It is interesting to note that the grammar in the reference manual was correct,
but the implementation was not [7].
The second ambiguity was stranger. Inside a pair of backquotes in Python,
any expression list should be legal, including the program:
a = 123
(4

a, "

The trailing comma in the expression a, should create a tuple, to be converted
into a string by the backquotes. The Python interpreter soundly rejected the
program, though. Upon inspection, the Python grammar has an ambiguity here
as well. Basically, it’s analogous to having a grammar for arithmetic expressions,
where both sides of nested expressions are denoted using left parentheses — you
can’t tell when you’'ve seen the end of one expression versus the start of a new,
nested expression.

What we find curious about this second ambiguity is that, despite it being
visible to the programmer, it had clearly been sitting in the Python interpreter
for some time. Perhaps Python programmers don’t use backquotes!

3.2 Lots and Lots of Batteries Included

The Python libraries are extremely large. The library modules written in
Python aren’t a problem — presumably when we have a full Python implemen-
tation, the library modules written in Python will just work. However, there is
a large body of built-in modules written in C too. In Python 1.5.2, there were
over 59,000 lines of C code in these modules; in Python 2.2.2, there are over
71,000 lines. Both these numbers exclude comments and blank lines.

There is no reason to expect that the size and complexity of the built-in
modules is going to decrease in future releases of Python. In terms of reverse-
engineering Python, creating a full reimplementation of these modules is daunt-
ing, not to mention the effort of ongoing maintenance. There are three basic
strategies we could adopt for implementing built-in modules:

1. Reuse. If we retained Python’s C API, conceivably we could make use of
the existing module code. That poses a large constraint on the degree to
which we can introduce radical changes into UCPy, though.

2. Rewrite (in Python). This is probably the fastest and most flexible route,
but it would automatically place UCPy at a severe disadvantage in timing
comparisons with CPython. Given that our short-term goal is to improve
upon Python’s speed, this is not the best choice.

3. Rewrite (in C). We have chosen this labor-intensive path to implementing
built-in module functionality. As we discover the need for parts of built-in
modules (typically based on what specific benchmark programs require),
we implement those parts.



Rewriting modules in C also means writing code that uses the garbage collection
interface properly, a not-always-trivial task. We are exploring ways to simplify
this process considerably.

3.3 RISC vs. CISC: A Reprise

Since our short-term goal is to make Python programs run faster, one obvious
avenue is to look at ways to optimize virtual machine code and the means of
executing the code.

With its large number of instructions, the CPython VM may be thought of as
a “CISC-VM,” by way of analogy to real CPU architectures. In our experience,
it is difficult to reason about such a large VM in terms of code optimization,
and any nontrivial VM experiments are expensive in terms of implementation
time.

Mamba, in contrast, can be considered a “RISC-VM.” It has a small instruc-
tion count and, apart from where Python’s semantics dictate otherwise, the
instructions are quite simple. It also features a register-based instruction set,
which adds to the instruction size but makes dependencies explicit — a useful
feature for code optimization.

Although each mamba instruction is four bytes long, most of that space en-
codes either register numbers or offsets. There are few bits remaining for the
instruction type itself, so there is relatively little room for expansion. This
means that a RISC-VM’s instruction set has to be gotten right initially; it is
not necessarily easy to add in new instructions at a later date. All of the Python
language, not just a subset, had to be encompassed by our instruction set design.

A critical factor in the performance of RISC architectures is the level of com-
piler sophistication. We are too early in the development of UCPy to ascertain
if this holds true for RISC-VM architectures as well.

3.4 “The Reference Manual says what?”

The Python language and CPython have grown up together, and CPython
has gradually evolved to support Python’s features. In contrast, designing a
RISC-VM from scratch was tremendously challenging. Clean designs had to
be repeatedly discarded because they were unable to support obscure details of
Python. The most troublesome spots are described below.

3.4.1 Bound Methods

When mamba was first designed, we wanted to investigate an alternative model of
bound method objects. For example, if one views a function as having a curried
form (that is, not as accepting a tuple of objects but instead as accepting just the
first parameter and returning a curried function on the remaining parameters),
then bound objects can be viewed as a restriction of currying to just the first
parameter. Currying would simulate bound method objects correctly, and add
a very useful and expressive feature to the Python language.



Although a design with currying was considered, it was abandoned because
of the difficulty of integrating it with the exotic features of the function Python
function call interface: */#* parameters and arguments, default-valued param-
eters, tuplified and keyword arguments.

Some Python code relies explicitly on the presence of bound method ob-
jects, and the freedom to inspect and modify the fields within them. If we
had removed bound method objects in favor of curried functions we would have
broken these Python programs. Also, function calls that would normally fail
if not enough parameters were passed would succeed in curried form. Curry-
ing would represent a major semantic change to Python and was therefore not
implemented.

3.4.2 Function and Method Calls

The Python function call interface is the amalgamation of many different mech-
anisms: */** parameters and arguments, default-valued and tuplified param-
eters, keyword arguments. The logic to implement the call instruction in the
virtual machine is by far the most complicated of all the instructions in the
machine.

One of the main problems encountered concerned tuple parameters:

def a((b, ¢)):
pass

We opted for a simple solution — emit code in the function’s prologue to decon-
struct the given tuple argument and then assign each component of the tuple to
the corresponding parameter name in the local namespace. Conceptually, this
would be like treating the above function as if it were written:

def a(_tmp):
b = _tmp[0]
c = _tmp[1]
pass

An advantage of this approach is that this work need not be done by the call
instruction. The consequences are that the unpacking of tuple parameter argu-
ments is slower since it is executed in virtual machine code instead of in native
code. Also, if there is an error such as an insufficient number of components
in the argument tuple, then an error is raised by the unpacking code which is
one activation record level deeper than the caller, which is where the CPython
virtual machine would raise the exception.

3.4.3 Coercion

The design of our virtual machine is based on the transformation of statements
A op B into the form A.op(B), where A and B are objects. For example, a[i]
is transformed into a.__getitem__(i). Ideally, we want to compile a + b into



a.__add__(b), thereby eliminating the need for an OP_ADD instruction and other
arithmetic instructions.

However, the arithmetic semantics of Python do not make this idea viable.
Even if it were possible to factor out the coercion logic into a COERCE instruction,
niceties such as reversed operations would still be problematic — in the above
example, if object a does not have an __add__ operation, an AttributeError
exception will be raised. Python semantics then require that a search for an
__radd__ function occur. Implementing this logic in VM code would require that
the instruction which retrieves the function attribute __add__ be surrounded by
an exception handler and exception handling code which searches for an __radd__
method. Not only would this lead to code bloat, given the widespread use of
arithmetic instructions, but it would also result in a performance penalty.

In our virtual machine, the solution was to add an OP instruction which con-
tains the appropriate logic to handle incremental operations, coercions, normal,
and reflected operations.

3.4.4 Exceptions

Consider the following code:

class Cl: pass
class C2: pass
class C3: pass

def f1(): return C1
def f2(): return C2
def £3(): return C3

try:
raise C3
except £1():
pass
except £2():
pass
except £3():
pass

Here, in order to determine which exception handler handles the exception,
the expressions £1(), £2(), and £3() have to be evaluated at run-time. Even
the types of the except expressions are not known at compile-time. As a result,
each expression must be evaluated and compared to the value of the exception
until an exception is found. Even worse is the fact that the execution of one
except expression could potentially change the value of a following except
expression, thereby imposing a top to bottom order of evaluation upon them.
There is no easy way to jump directly to the exception handler as there is in
other languages.



3.4.5 TMTOWTDI, a.k.a. Fallbacks

As mentioned, methods such as __add__ fall back to methods such as __radd__.
An important observation is that the fallback mechanism requires operands
to be changed prior to being passed to the fallback function. In the case of
__radd__the operands are interchanged. For arithmetic, the logic to interchange
the operands is built directly into our OP instruction.

Comparison operations also require special treatment because of their use of
fallbacks. A comparison such asa < b cannot simply be compiled asa.__1t__(b)
since, in the absence of the __1t__ method, a fallback to the __cmp__ method is
required. Although the virtual machine can simply call a.__cmp__(b) instead
of a.__1t__(b), the return values are different: if a < b, __1t__ will return 1,
but __cmp__ will return —1. As a result, the virtual machine instruction which
extracts methods from objects must provide a wrapper for the extracted com-
parison method which translates the return values appropriately.

4 Summary

UCPy is a new implementation of Python, which we are using for research to
improve the performance of dynamically-typed languages. Exploring the dark
corners of Python has revealed a number of difficult issues. To fix these outright
would result in a language which is not Python, but perhaps the problems can
be smoothed over as Python continues to evolve.
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