
An Exceptional Programming Language
John Aycock

Department of Computer Science
University of Calgary

2500 University Drive N.W.
Calgary, Alberta, Canada T2N 1N4

Phone: +1 403 210 9409, Fax: +1 403 284 4707
Email: aycock@cpsc.ucalgary.ca

Mike Zastre
Department of Computer Science

University of Victoria
P.O. Box 3055

Victoria, B.C., Canada V8W 3P6
Phone: +1 250 721 7220, Fax: +1 250 721 7292

Email: zastre@cs.uvic.ca

Abstract— The use of exceptions in programming languages
is usually reserved for exceptional conditions. This is a narrow
view of exceptions, however. We demonstrate how exceptions can
be used to express common programming language constructs,
and thus form the basis of a new type of exception-based
programming language. We also generalize exceptions so that
they may be thrown into a program’s future execution, not just
its past. Implementation techniques for both generalized and
traditional exceptions are presented.

Index Terms— Programming languages, exceptions, control
flow

I. I NTRODUCTION

Exception-handling facilities are available in many program-
ming languages, especially recent ones, and these facilities are
used for ‘Separating the exceptional structure from the code
associated with normal operation’ [1, page 192].

Early work on exceptions suggested three possible uses for
them [2]:

1) handling the failure of an operation;
2) providing extra, “out-of-band” information about an

operation that successfully completed;
3) monitoring an ongoing operation.

Current usage of exceptions in practice is fixated upon the first
application: failure. Exceptions are used to signal exceptional
failure conditions, but this gives exceptions short shrift.

There is another possible use of exceptions which has
not yet been explored, where exceptions can be used for a
program’s control flow. Instead of separating the exceptional
structure from normal code, the exceptional codeis the normal
code.

We show how exceptions can be used to implement control
flow, and thus lay the groundwork for a new type of exception-
based programming language in Section II. Section III dis-
cusses exception implementation issues.

Current exception-handling facilities expect thrown excep-
tions to be caught by exception handlers already seen during
execution of the program; in other words, the program’s
past. In Section IV we remove this restriction, and generalize
exceptions to allow exceptions to be thrown into the program’s
future execution as well. We consider several possible seman-
tics and implementations of generalized exceptions as well.

II. A C OMPENDIUM OF CONSTRUCTS

Many common control flow constructs in programming
languages can be described using exceptions. Here, we use
a C-style pseudocode to illustrate how key constructs can be
represented in exception form. For exceptions, our pseudocode
uses the familiartry and catch keywords, andthrow
obviously throws an exception. Theretry keyword, used
in an exception handler, causes the program to re-execute the
try block from which the exception was raised; these are
retry semantics [3].

In the examples below, the original control flow construct
(without exceptions) appears to the left; the exception-based
equivalent is on the right.

A. If-Else Statements

Conditional if-else statements are implemented using excep-
tions by first evaluating the conditional expression inside a try
block, yielding a boolean value. This boolean value is then
thrown; catching a true value corresponds to the if-part code,
a false value to the else-part.

if (x < 123) {
if-part

} else {
else-part

}

try {
throw x < 123

} catch true {
if-part

} catch false {
else-part

}

Of course, an if statement without an else clause is trivially
represented with an empty else-part.

B. Switch Statements

The design of exception-based switch statements was sug-
gested by Montanaro [4] for the Python programming lan-
guage, and was what initially started us considering our
exception-based language.

As exceptions, switch statements are simply an extension
of the if-else statement. The switch expression is evaluated
inside a try block, and then thrown. The catch clauses directly
correspond to the original case labels.



switch (x) {
case 1:

case1

case 2:
case2

...
case N:

caseN

}

try {
throw x

} catch 1 {
case1

} catch 2 {
case2

...
} catch N {

caseN

}

Different languages have different semantics with respect
to whether or not execution falls through automatically from
one case to the next one. The example above does not
demonstrate fall-through semantics, but the fall-through effect
can be created by code duplication: ifcase1 falls through onto
case2, then the catch handler would contain code for both, as
shown below.

...
} catch 1 {

case1

case2

} ...

Breaking out of control flow constructs, like switch state-
ments and loops, is a straightforward application of exceptions.
The same idea extends to multi-level break statements (e.g.,
the Bourne shell) and labeled break statements (e.g., Java).
The general form to break out of a construct is:

construct {
code before
break construct
code after

}

try {
code before
throw exit_construct
code after

} catch exit_construct {
// do nothing

}

C. Do-While Loops

Repeated execution of a loop body can be captured using
retry semantics. For a do-while loop, the loop condition is
evaluated immediately following the loop body’s code; the
resulting boolean is thrown. Throwing a false boolean value
indicates the end of the loop, and a true value causes the loop
body to be iterated by re-executing the try clause withretry.

do {
loop-body

} while (x < 123)

try {
loop-body
throw x < 123

} catch true {
retry

} catch false {
// do nothing

}

D. While Loops

A while loop can be represented as a combination of an
if statement and a repeat loop. Indeed, this transformation
is done in optimizing compilers to facilitate hoisting code
out of loops [5], [6]. For our purposes, this representation
of while loops also means that the do-nothing catch clause
can be shared between the inner repeat loop and the outer if
statement.

while (x < 123) {
loop-body

}

try {
throw x < 123

} catch true {
try {

loop-body
throw x < 123

} catch true {
retry

}
} catch false {

// do nothing
}

E. For Loops

A general form of for loop, where a programmer-specified
expression is permitted for loop initialization, control, and
increment, can be easily changed into a while loop. For
illustration, we have also added acontinue to the loop
body; acontinue statement, in a for loop, transfers control
to the increment expression.

for (x = 1; x < 123; x = x + 1) {
code before
continue
code after

}
becomes

x = 1
while (x < 123) {

code before
goto increment
code after

increment:
x = x + 1

}
In exception form, this while loop is then represented as

shown below.

x = 1
try {

throw x < 123
} catch true {

try {
try {

code before



throw increment
code after

} catch increment {
// do nothing

}
x = x + 1
throw x < 123

} catch true {
retry

}
} catch false {

// do nothing
}

Clearly, with such a heavy reliance on the exception-
handling mechanism in our language, the efficiency of ex-
ceptions is of major concern.

III. E XCEPTION IMPLEMENTATION ISSUES

A significant obstacle to using exceptions as a common pro-
gramming construct is their relatively high run-time expense
compared to traditional control-flow mechanisms. There can
be places where the run-time cost of a thrown exception, such
as in a typical implementation of a Java array-loop, is less than
the run-time cost of the code controlling the loop [7]. Here the
exception is used as a code optimization, transferring control
out of a loop, with the optimization’s potential profit increasing
as the number of loop iterations increases.

However, in this paper we are more interested in exploring
techniques for reducing the run-time cost of anindividual
exception, especially since our language makes heavy use of
them. Although there has been some effort to minimize the
cost of exceptions as much as possible in languages such
as C++ [8], the default position of many who implement
programming languages can be summarized as:

• Exceptions are rare, and if they are not then they should
be made to be rare.

• It is acceptable to decrease the cost of regular code by
significantly increasing the cost of exceptions [9, p.17].

Books that provide advice to programmers even go so far as to
advise their readers to avoid exceptions as much as possible
because of the expense [10]. Approaches towards reducing
exception cost take advantage of just-in-time techniques; for
example, if an exception and its handler are both local to
some method, then a JIT compiler ensures the general-purpose
exception-dispatch mechanism is not used for this exception,
but rather a less expensive “goto” is instead used [11]. Not
all JIT implementers agree with this approach, however; we
have observed that thrown exceptions – even those repeatedly
thrown from the same site – take more time to be caught with
Sun’s HotJava JIT than with the older Classic JVM [12].

Before presenting our approach, there remains one more
observation. Any technique used to reduce exception-handling
time should not be at the expense of code which doesnot
use exceptions. Given that exceptions are common in our
language, we could relax this restriction by bounding the

a

b c

d

e f g

h

i j k

m

E (1)

E (2)

E (3)

E (4)

Fig. 1. Callgraph example

overhead imposed on code without exceptions. Regardless of
the choice, our interest is in ensuring overhead is minimized.
To accomplish this we can use a combination of two tech-
niques [12]:minimize table lookups during stack unwinding
andeliminate construction of unused exception objects.

A. Minimize table lookups

A general-purpose exception-handling mechanism for a
language such as Java is usually implemented with dynamic
lookups in mind; that is, at an exception-throw site, the search
for a handler proceeds by examining each activation frame on
the stack and stops when this unwinding upon finding the first
handler. However, we can do better than this by performing
a bit of program analysis (static or dynamic) in order to
answer the question: Which stack frames should be examined?
Consider the callgraph in Figure III-A where labels on edges
indicate handlers surrounding the callsite. For example,a’s
call of b is within a handler for exception typeE; there are
four different handlers forE in this callgraph. If an instance of
E is thrown whenm is active, to which of the four handlers for
E should control be transferred? If we know thatm is called by
j, then clearly we should unwind the stack toh and continue
our search there; ifh is called byf, then we can unwind to
d; at that point, we can find the handler by determiningd’s
caller.

A more precise callgraph could result in even fewer table
lookups, but there is a tradeoff here between the cost of the
analysis producing such a callgraph and the run-time savings
from fewer lookups.



B. Unused exception objects

In languages such as Java, throwing an exception results
in some exception object being created. We can consider that
some data flow exists from the throwsite to the handler because
the object may be referenced by the handler. Of course, the
key word is “may” as there is no requirement for a handler to
use its exception object. However, the actual construction of
such objects can require a significant amount of run-time effort
(such as the need to construct a stack trace, for example).

If the set of handlers “reachable” from a specific throwsite
do not use their exception objects, then there is no need to
create such an object at the throwsite. The code emitted for
the throwsite can either omit the code needed to construct the
object, or equivalently be directed to call a different version of
the code needed to begin the process of throwing and handling
an exception.

IV. GENERALIZED EXCEPTIONS

There is noa priori reason why exceptions must be limited
to being thrown into a program’s past execution. We define
generalized exceptions to be exceptions which can be thrown
into a program’s future execution.

But what does it mean to throw an exception into the future?
We look at three different semantic models for generalized
exceptions:

1) subroutine calls;
2) flag setting;
3) transactions.

We examine these three models in detail in the remainder of
this section.

A. Subroutine call model

Subroutines such as functions and procedures are not strictly
necessary in a programming language, but do provide an
important tool for abstraction and code conciseness. They
do not fit well with traditional exception models, however,
because a subroutine call is a statement about the future
execution of the program.

Enter generalized exceptions. A subroutine call becomes a
generalized exception throw, and each subroutine definition
a generalized exception catch. A return from a subroutine to
its call site is aresume statement, which continues program
execution from the point where an exception was thrown –
these are resumption semantics for exceptions [3].

call foo
...

subroutine foo() {
subroutine body
return

}

general_throw foo
...

general_catch foo {
subroutine body
resume

}

There are three things to note about this semantic model.
First, it implies that multiple generalized exceptions can be
active simultaneously, one for each level of call depth in the

original program. Second, subroutine arguments and return
values, if any, would need to be passed using some separate
mechanism, perhaps as attributes of the thrown exception
object. Third, to express recursive subroutine calls, simply
nesting generalized catch clauses is not sufficient because
cycles cannot be represented.

The cycle representation problem can be avoided by mak-
ing generalized try clauses implicit rather than explicit. In
effect, there is an impliedgeneral try clause around each
generalized exception throw. Associated with this try clause
are generalized catch clauses, one for each subroutine that
would be visible from the call site in the original code. Over-
loading could also be implemented with this model: instead
of throwing foo, for instance, we could throwfoo int or
foo string, to reflect the type of a subroutine’s arguments.

B. Flag setting model

Another semantic model for generalized exceptions is the
flag setting model. In this model, the raising of a generalized
exception does not alter the control flow, but simply sets a
flag noting the thrown exception. Program execution continues
normally.

Generalized catch clauses can be attached to any block of
code. When execution leaves a block with these catch clauses,
and a pending generalized exception is caught, the associated
catch clause is executed at that time.

For example, the code below would iterate through an array
and output the last array element that matcheskey, but only
if at least one matched. (The loop and conditional have been
left in their original form for clarity.)

i = 0
while (i < length(array)) {

if (array[i] == key) {
last = i
general_throw found

}
i = i + 1

} general_catch found {
print last

}
One design issue for the flag setting model is whether or not

the same generalized exception, thrown multiple times before
encountering a suitable catch clause, is caught multiple times
or only once. The above code would only want to see one
exception caught, no matter how many times the exception
had been thrown.

On the other hand, ifN thrown exceptions result inN
catches when a matching catch clause is found, we have the
basis of a queue data structure. The code below traverses an
array and queues up elements for later processing by the catch
clause:

i = 0
while (i < length(array)) {

if (needs_processing(array[i])) {



general_throw array[i]
}
i = i + 1

} general_catch array_element {
process(array_element)

}
The while loop would go through the entire array first,

throwing array elements as needed; after the while loop
finished, the catch clause would be executed once for each
thrown element.

C. Transactional model

The transactional model of generalized exceptions is in-
spired by database transactions [13]. Like the flag setting
model, the transactional model continues normal program
execution after a generalized exception is thrown. However,
no expression results are committed, and no I/O is performed,
until the appropriate generalized catch handler is reached.

Intuitively, the transactional model is akin to “fast forward-
ing” the program’s execution to the catch clause. Unfortu-
nately, the implementation and use of such a model seems
fraught with peril. It is not at all clear that a matching
catch clause would ever be reached, causing the program to
cease normal functioning forever. Further, there are few useful
programs which can execute meaningfully without some form
of I/O. While it may have intuitive appeal, this model seems
mired in practical difficulties, except perhaps in restricted,
well-understood contexts.

V. CONCLUSION

We have presented the basis of a new type of exception-
based programming language, where the language primitives
consist only of expression evaluation and exceptions. Control
flow can be represented simply as an application of the
exception mechanism; generalizing exceptions allows them to
be thrown into the future as well as the past.

We have only begun to explore the possibilities of
exception-based languages. Because of their high demands on
exception-handling mechanisms, exception-based languages
are an excellent proving ground for work in efficient exception
processing, which can be applied to “normal” languages as
well.

ACKNOWLEDGMENT

Thanks to Jan Vitek for helpful discussions about these
ideas. This work was funded in part by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] M. P. Robillard and G. C. Murphy, “Static analysis to support the
evolution of exception structure in object-oriented systems,”ACM Trans-
actions of Software Engineering and Methodology, vol. 12, no. 2, pp.
191–221, 2003.

[2] J. B. Goodenough, “Exception handling: issues and a proposed notation,”
Communications of the ACM, vol. 18, pp. 683–696, 1975.

[3] P. A. Buhr and W. R. Mok, “Advanced Exception Handling Mecha-
nisms,” IEEE Transactions on Software Engineering, vol. 26, no. 9, pp.
820–836, September 2000.

[4] S. Montanaro, “Re: control structures (was ”re: Sins”),” Usenet posting
to comp.lang.python, Jan. 2000.

[5] A. W. Appel, Modern Compiler Implementation in Java. Cambridge
University Press, 1998.

[6] R. Morgan,Building an Optimizing Compiler. Digital Press, 1998.
[7] M. Zastre and R. N. Horspool, “Exploiting Exceptions,”Software:

Practice and Experience, vol. 31, no. 12, pp. 1109–1123, October 2001.
[8] D. Chase, “Implementation of exception handling, Part I,”The Journal

of C Language Translation, vol. 5, no. 4, pp. 229–240, June 1994.
[9] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kaslow,

and G. Nelson, “Modula-3 report (revised),” Digital Systems
Research Center, Tech. Rep. Technical Report 52, 1989.
[Online]. Available: http://gatekeeper.dec.com/pub/DEC/SRC/research-
reports/abstracts/src-rr-052.html

[10] J. Shirazi,Java Performance Tuning. O’Reilly and Associates, Inc.,
2000.

[11] S. Lee, B.-S. Yang, S. Kim, S. Park, S.-M. Moon, K. Ebcio˘glu,
and E. Altman, “Efficient Java exception handling in just-in-
time compilation,” in Proceedings of the ACM 2000 conference
on Java Grande, June 2000, pp. 1–8. [Online]. Available: acm-
cite/proceedings/plan/337449/p1-lee/

[12] M. Zastre, “The Case for Exception Handling,” Ph.D. dissertation,
Department of Computer Science, University of Victoria, 2004.

[13] J. Gray and A. Reuter,Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.


