
Aggressive Type Inferen
e

John Ay
o
k

Department of Computer S
ien
e

University of Vi
toria

Vi
toria, B.C., Canada

ay
o
k�
s
.uvi
.
a

Abstra
t

Python is a \dynami
ally typed" language be
ause,

in general, the type of any variable is not known

de�nitively until run-time. This feature is known to

be a major limiting fa
tor in optimization of Python

ode, and is typi
ally addressed by
alls for optional

stati
 typing to be added to Python. In this paper I

des
ribe an appli
ation for type inferen
e unrelated

to optimization, and present a new method for di-

vining type information | aggressive type inferen
e

| whi
h determines the types of variables in the ab-

sen
e of expli
it
ues. An empiri
al study of Python

programs suggests that this might be a reasonable

approa
h.

1 Introdu
tion

In talking with people at last year's Python Confer-

en
e (IPC7), I mentioned the possibility of writing a

Python
ompiler. . . in Python. Not
ontent to stop

there, I suggested that the idea
ould be taken fur-

ther, to translate Python
ode into Perl [29℄.

The idea of a Python-to-Perl translator has some

merit. In fa
t, many of the arguments in favor of

JPython [11℄ apply, parti
ularly the ability to lever-

age Perl development. (And supply an alternative

for Python programmers who are for
ed to work ex-

lusively with Perl!)

Internally, both Python and Perl
ompile pro-

grams into
ode for a language-spe
i�
 virtual ma-

hine (VM). This gives four avenues by whi
h

Python
ode may be translated into Perl, shown as

dashed arrows in Figure 1. Some avenues are more

promising than others, though. Both languages'

VMs are fully spe
i�ed in terms of
on
rete oper-

ational semanti
s [27℄, a polite way of saying that

their details are buried in sour
e
ode and subje
t

to
hange. A translation involving either VM would

result in unreadable and unmaintainable
ode.

Python
Code

Python
VM Code

Perl
Code

Perl
VM Code

Figure 1: Python to Perl translation.

a = 123

b = [a, 456℄

 = {'yyj': a}

print a,

$a = 123;

�b = ($a, 456);

%
 = ('yyj' => $a);

print $a;

Figure 2: Translation example.

In
ontrast, a sour
e-to-sour
e translator would be

ideal. Figure 2 shows a possible Perl translation for

a snippet of Python
ode.

What does this have to do with type inferen
e?

The translated Perl
ode must have the $�%&* type

spe
i�ers on all Perl variables. This tells Perl, for in-

stan
e, that a variable is s
alar (string, number), an

array, or a hash. Determining this type information

is the task of type inferen
e.

2 Type Inferen
e

The pro
ess of inferring variables' types by looking

at how they are used is
alled type inferen
e.

Type inferen
e has a long tradition in fun
tional

def foo(x):

print x # S1

if x:

x = 123 # S2

else:

x = 'ab
' # S3

print x # S4

Figure 3: Dynami
 typing in a
tion.

languages. Hindley[9℄ and Milner [19℄ independently

dis
overed a method for inferring types at
ompile-

time. Its most widely-known in
arnation is in the

language ML [18℄.

Type inferen
e in fun
tional languages is, in turn,

based on work in the early 1960s on automati
 the-

orem provers. In parti
ular, Robinson [21℄ gave an

algorithm for unifying logi
al expressions whi
h was

used later by Hindley and Milner for inferring types.

Algol-family languages [25℄, by
omparison, have

relied primarily on expli
it type information sup-

plied by the programmer, although there have been

some attempts to the
ontrary [10℄.

These type inferen
e systems are
onservative in

the sense that, given a variable X , they will always

ompute a superset of X 's type [1℄.

3 Aggressive Type Inferen
e

Python is a dynami
ally-typed language, meaning

that the exa
t types of variables are not known un-

til the program is run. In Figure 3, x is
learly an

integer if S2 is exe
uted, or a string if S3 is exe-

uted. And at S4? The exa
t type of x at S4 is in-

determinate at
ompile-time, unless we know whi
h

part of the if-statement will be taken at run-time.

In this
ase, that requires knowledge of x's value,

whi
h
annot generally be known at
ompile-time.

Even more problemati
 is the type of x at S1. If

the program were to be analyzed in its entirety |

whole-program analysis | we
ould attempt to lo-

ate all
alls to foo and see what the possible types

of x may be. This is a nontrivial task in itself.

Code like foo(17) is easy to lo
ate; dis
overing that

apply(fun
tions[y+random()℄, (17,))
alls foo

is unde
idable.

The �nal
ompli
ation is that Python, like many

other s
ripting and fun
tional languages, allows new

ode to be generated and exe
uted at run-time. In

the
ase of Python, this
an be done dire
tly with

the exe
 statement, or more surreptitiously by
re-

ating a .py �le on-the-
y and importing it. Type

information arising in this way is unobtainable at

ompile-time.

These problems are not unique to Python, and are

known to implementors of other dynami
ally-typed

programming languages. Work on T
l
ompilers, for

example, has universally noted the diÆ
ulty of type

inferen
e [14, 22, 23℄. (The bene�ts are equally well

known. Type information has been
hara
terized

as being
riti
al to the eÆ
ient implementation of

Smalltalk [13℄, SELF [5℄, and APL [17℄.)

How
an types of Python variables be determined

at
ompile-time? All proposed solutions to date in-

volve (optional) stati
 typing, whi
h requires the

programmer to expli
itly insert type information.

Variations on this theme in
lude [16, 20℄ and innu-

merable dis
ussions on
omp.lang.python and the

Python Types-SIG.

I have taken a di�erent approa
h with the idea of

aggressive type inferen
e (ATI). The key idea under-

lying ATI is this:

Giving people a dynami
ally-typed language

does not mean that they write dynami
ally-

typed programs.

In other words, just be
ause Python permits pro-

grammers to write
ode like that in Figure 3 doesn't

mean that
ode like it is written frequently. A simi-

lar
onje
ture

1

about usage of T
l variables is made

in [14℄; empiri
al eviden
e for this \type
onsis-

ten
y" is presented in [28℄, where they found about

80% of operators in a large sample of I
on programs

maintained the same type.

ATI works a

ording to two rules:

1. Flow-insensitivity. This is a
on
ept from data

ow analysis. To quote Cooper and Kennedy [6,

page 247℄,

`Flow insensitive information de-

s
ribes data
ow events whi
h o

ur

on at least one path through a pro
e-

dure. . . By
ontrast,
ow sensitive in-

formation des
ribes data
ow events

whi
h o

ur on every path through a

pro
edure.'

E�e
tively this means that
ontrol
ow is ig-

nored. Applying this rule to Figure 3, ATI

would de
ide that x has the type string [

number at S2, S3, and S4.

1

Unfortunately, un
on�rmed as of this writing [15℄.

lass
:

def set(self, o):

self.o = o

def get(self):

return self.o

Figure 4: Inferen
e in isolation indeterminate.

2. Type
onsisten
y within a s
ope. This se
ond

rule addresses the problem of determining x's

type at S1. If a variable has a type T during

its lifetime, then it has type T at every point

within the s
ope in whi
h it is bound to a value.

In Figure 3, ATI infers x's type at S1 to be

string [number, be
ause x has that type later

in the fun
tion. Furthermore, ATI has rea
hed

this
on
lusion without having to look beyond

the
ode for foo.

An analogy
an be drawn between this se
ond

rule and the s
ope rules in Pas
al [12℄, where an

identi�er's s
ope is the entire blo
k in whi
h it

is de
lared, not just from the de
laration point

onwards.

ATI has apparently resulted in some rather useless

type information: no single distin
t type for x has

been arrived at! Now, suppose that a restri
tion is

pla
ed on Python programs. For a program to be

used with ATI, it must be written in su
h a way

that ATI
an infer an exa
t type for all variables.

Otherwise, a
ompile-time error will result. Figure 3

is an invalid program a

ording to this restri
tion.

Of
ourse, all Python programs do not adhere to

this restri
tion, nor should they. This restri
tion is

ertainly a

eptable for my Python-to-Perl appli
a-

tion, though. It is in keeping with proposed \high

speed" implementations of a Python subset, su
h as

Swallow [7℄ and Viper [24℄. And it is a similar restri
-

tion to that whi
h optional stati
 typing requires.

The above two ATI rules alone are insuÆ
ient to

infer types for some programs. In Figure 4, looking

at
.set() or
.get() in isolation does not allow

any type inferen
es to be made. ATI
an be used in

onjun
tion with other sour
es of type information,

as I des
ribe in the next se
tion.

4 ATI Implementation

I have developed a proof-of-
on
ept implementation

of ATI. Approximately 1200 lines of Python
ode, it

operates in two phases (Figure 5):

Summarizing
(Phase 1)

Type
Inference
(Phase 2)

input.py

builtins.i

Imported .i
Files

Summary
Information

Figure 5: ATI Phases.

1. The input Python program is s
anned and

parsed. (No semanti

he
ks are performed;

the input is assumed to be
orre
t.) All in-

formation relevant to ATI is distilled into sum-

mary information and saved into a �le with a

.i suÆx. For example, if the
ode in Figure 4

resided in blarg.py, then its summary informa-

tion would be written to blarg.i, whose
on-

tents are shown in Figure 6.

All information about
ontrol
ow, su
h as

bran
hes and loops, is dis
arded. Information

that is kept in
ludes:

(a) The s
ope of
lasses, methods, and fun
-

tions (s
ope).

(b) Variable assignments (assign).

(
) Operations on variables (op).

(d) Method/fun
tion return types (return).

(e) The types of names (type).

(f) Equivalen
es between names (equ). In

Figure 6, for example, it is noted that

the zero

th

parameter to set is an alias for

set's lo
al variable self.

(g) Import statements (import| not shown).

type
 is
lass

s
ope
 begin

equ set.#1 = set.o

equ set.#0 = set.self

type set is fun

s
ope set begin

assign #t4 = o

equ self = #t3

op #t4 is #t3 . o

s
ope set end

equ get.#0 = get.self

type get is fun

s
ope get begin

return #t2

equ self = #t1

op #t2 is #t1 . o

s
ope get end

s
ope
 end

Figure 6: Summary information (reformatted for

legibility).

(h) Global de
larations (global | not

shown).

2. The summary information is repeatedly exam-

ined in order to propagate type information.

For example, given the summary information

assign x = y

assign y = #t1

type #t1 is string

ATI would dis
over on the �rst pass that there

are three names: x, y, and #t1 (a temporary

name generated by phase 1). It would also note

that #t1 has the type string. On the se
ond

pass, ATI would �nd that y has the type string

too. Finally, ATI would
on
lude on the third

pass that x is a string. (This pro
ess
an be

made mu
h more eÆ
ient!)

The names of imported modules appear in a

�le's summary information. When this is en-

ountered in phase 2, an attempt is made to

read a .i �le for the imported module. It is not

an error if su
h a �le is missing: in this way, ATI

an be given either partial or whole-program in-

formation, as appropriate.

As a general rule, ATI will be more e�e
tive the

more information it is given. Taking the
ode

from Figure 4 as input, my ATI implementa-

tion only de
ides that
 is a
lass, self is an

lass
:

def set(self, o):

self.o = o

def get(self):

return self.o

x =
()

x.set(123)

y = x.get()

Figure 7: More information, better inferen
e.

def abs(N):

N = 123

return 123

def dir(obje
t=None):

return ['ab
'℄

def range(a1, a2=123, a3=123):

return [123℄

Figure 8: Some built-in fun
tion de�nitions.

instan
e, and set/get are methods. But given

the few extra lines of input highlighted in Fig-

ure 7, the
orre
t types of all names in the input

are inferred:

lass

.set method

.get method

.set.self instan
e

.get.self instan
e

.set.self.o number

.get.self.o number

x instan
e

y number

Type information for Python's built-in fun
-

tions is automati
ally imported from the �le

builtins.i. An ex
erpt from its sour
e �le is

shown in Figure 8; these fun
tions are de�ned

skeletally be
ause only type information is re-

quired.

Both phases use the little language framework de-

s
ribed in [2℄. I am
urrently reworking the ATI im-

plementation to over
ome some design limitations

in Phase 2. In parti
ular, inferen
e involving lists

is in
omplete, making full analysis of real programs

troublesome.

5 On Being Wrong

ATI may arrive at a solution whi
h appears to dis-

over types for all variables, yet is in
omplete in the

sense that all possible types for variables have not

been found. Furthermore, it is not generally possi-

ble to dete
t this situation. Consider the following

ases:

1. Only partial information is given to ATI. In this

ase, ATI
an obviously miss vital information.

2. Code is generated at run-time. Sin
e ATI is

done at
ompile-time, it
annot be privy to run-

time information. This may be mitigated to

some extent by warning about uses of the exe

statement, and imported modules for whi
h no

information is available at
ompile-time.

3. The
all graph is obs
ured. By this I mean
ode

where the
ow of
ontrol is un
lear. For ex-

ample, fun
tion
alls made through an array of

fun
tion pointers, or a
lass whi
h dynami
ally

hanges its super
lass.

In these situations, the \aggressive" nature of ATI

omes into play. I assume that even though
ases

su
h as the above are possible, that they o

ur in-

frequently and thus may be ignored.

6 Appli
ability

It is a rather bold
laim to say that Python pro-

grams, overall, are not espe
ially dynami
. I have

done some stati
 and dynami
 analysis of programs

whi
h suggest that there is some truth to this
laim.

(Only the results are presented here; the details of

the analyses are deferred to the Appendix.)

Seven bodies of Python
ode were
hosen for this

survey, a total of 51,300 lines of
ode (LOC):

1. Idle 0.4, a graphi
al user interfa
e for Python

development bundled with the Python 1.5.2 dis-

tribution.

2. Gad
y 1.0, a relational database system [30℄.

3. Grail 0.6, an Internet browser [4℄.

4. HTMLgen 2.2, a generator of HTML do
u-

ments [8℄.

5. J--, a
ompiler for a subset of Java.

6. Lib, the Python 1.5.2 library (sans subdire
to-

ries).

7. Pystone 1.1, a Dhrystone ben
hmark in
luded

in the Python 1.5.2 distribution.

The
ode was stati
ally analyzed for indi
ations of

ode being dynami
ally generated and exe
uted: the

exe
 statement, and uses of eval(), exe
file(),

and import (). (These are
ases where ATI will

fail.) The results are shown in Table 1, broken down

by individual
onstru
ts in addition to being taken

as a total per
entage of lines of
ode.

2

Not surprisingly, the stati
 o

urren
e of these

four
onstru
ts is highest in Python's library
ode,

where esoteri

ode would be expe
ted. But even in

the library, the frequen
y of these
onstru
ts is in-

signi�
ant when
ompared to the number of lines of

ode. However, as the Python library
ode is
learly

atypi
al, and it is not obvious how to fairly test su
h

disparate
omponents, I ex
luded it from further di-

re
t analysis.

For dynami
 analysis, ea
h pa
kage was run us-

ing an instrumented Python interpreter. This inter-

preter
ounted the dynami
 o

urren
e of the same

four
onstru
ts and the number of Python VM in-

stru
tions exe
uted. These results are shown in Ta-

ble 2. Again, the results suggest that dynami

ode

generation fa
ilities in Python are not heavily used.

Having few impediments to
ompile-time analysis

of Python
ode is important; for ATI, having vari-

ables that don't
hange from one type to another

is even more important. Using the instrumented in-

terpreter again, I tra
ked VM instru
tions that store

values to lo
al and global variables,
lassifying ea
h

instru
tion's e�e
t on a variable's type into one of

three
ategories:

1. T

NULL

! T

X

. No
hange of type, be
ause the

variable has no prior value (this happens when

a variable hasn't been assigned to previously, or

has been deleted with del).

2. T

X

! T

X

. No
hange of type resulted.

3. T

X

! T

Y

. A
hange of type resulted.

Table 3 shows the results of this experiment. Ob-

viously, the vast majority of VM store instru
tions

do not result in a type
hange. This raises several

questions.

Are T

X

! T

Y

lo
alized? In other words, are type

hanges made throughout the program, or are they

on�ned to small portions of
ode? Table 4 shows

that there are only a few
ulprits. (Roughly speak-

ing, frame obje
ts
orrespond to fun
tion/method

2

The eval() number for Gad
y was determined by manual

inspe
tion, for reasons dis
ussed in the Appendix.

exe
 eval exe
file import LOC % of LOC

Idle 1 0 1 1 4449 0.07

Gad
y 0 2 0 1 10200 0.03

Grail 4 2 0 0 6419 0.09

HTMLgen 0 4 1 2 4794 0.2

J-- 0 0 0 0 1498 0.0

Lib 11 23 2 12 23754 0.2

Pystone 0 0 0 0 186 0.0

Table 1: Stati
 o

urren
e of dynami

onstru
ts.

exe
 eval exe
file import Instru
tions % of Instru
tions

Idle 1 0 0 12 346617 0.004

Gad
y 0 47 0 0 7957055 0.0005

Grail 214 6 0 0 4676698 0.005

HTMLgen 0 831 10 0 422496 0.2

J-- 0 0 0 0 8096543 0.0

Pystone 0 0 0 0 6702077 0.0

Table 2: Dynami
 o

urren
e of dynami

onstru
ts.

T

X

! T

Y

(as

T

NULL

! T

X

T

X

! T

X

T

X

! T

Y

Stores % of Stores)

Idle 12462 8827 1633 22922 7.1

Gad
y 482644 185353 7444 675441 1.1

Grail 107154 99651 8410 215215 3.9

HTMLgen 10755 11351 835 22941 3.6

J-- 67475 1238553 1820 1307848 0.1

Pystone 220247 290005 7 510259 0.001

Table 3: Dynami
 type
onsisten
y from VM store instru
tions.

Frame Obje
ts Code Obje
ts

Total T

X

! T

Y

% Total T

X

! T

Y

%

Idle 6705 1285 19.2 369 28 7.6

Gad
y 164196 3261 2.0 792 61 7.7

Grail 78413 7472 9.5 1252 124 9.9

HTMLgen 11594 795 6.9 579 24 4.1

J-- 50174 1814 3.6 284 11 3.9

Pystone 170106 6 0.004 61 6 9.8

Table 4: Lo
alization of type
hanges.

Total Lo
al Lo
als with % with

Variables > 1 Type > 1 Type

Idle 1801 20 1.1

Gad
y 3143 150 4.8

Grail 4668 91 1.9

HTMLgen 1581 15 0.9

J-- 801 2 0.2

Pystone 264 0 0.0

Table 5: Dynami
 type
onsisten
y of lo
al vari-

ables.

invo
ations, and
ode obje
ts
orrespond to fun
-

tions/methods in the program text.)

What does this mean in terms of real variables?

The data in Table 3 does not tell the whole story in

terms of variables in the program text. For example,

the
ode

x = 123

del x

x = 'ab
'

would appear as two T

NULL

! T

X

stores, rather

than a T

X

! T

Y

. Another extreme
ase would be

where every variable's type is
hanged on
e, then

remains
onstant thereafter. Sin
e ATI is dependent

on the type
onsisten
y of variables in the program

text, I used the same dynami
 data to re
onstru
t

the lo
al variables in ea
h
ode obje
t. As the results

in Table 5 show, the numbers in Table 3 are not

misleading.

Are
ertain type
hanges predominant? The short

answer: no. This seemed to depend heavily on the

parti
ular appli
ation; in J--, for example, over 99%

of the type
hanges were made from None to some

other type. This predominan
e was not true in gen-

eral, however.

7 A Tale of Two Type Systems

The original motivation for ATI was Python-to-Perl

onversion, determining the appropriate Perl type

spe
i�ers for
onverted Python variables. How
an

ATI be applied?

In an apparent
ontradi
tion, Figure 3 would
on-

vert easily into Perl | the resulting program is

shown in Figure 9. This, despite the assertion in

Se
tion 3 that ATI must infer an exa
t type for vari-

ables! The
at
h is that Python-to-Perl
onversion

involves two type systems. To be more pre
ise, ATI

must infer a type for ea
h Python variable whi
h has

sub foo {

my ($x) = �_;

print "$x\n"; # S1

if ($x) {

$x = 123; # S2

} else {

$x = 'ab
'; # S3

}

print "$x\n"; # S4

}

Figure 9: Dynami
 typing: the resulting Perl.

a mapping to a unique member of the type system

of interest.

For example, Figure 10 shows a mapping between

ATI-inferred types and Perl types. Figure 3's
ode

is a

eptable by this mapping be
ause both Python

strings and numbers map into Perl s
alar variables.

(This parti
ular mapping was used for a manual

translation of some Python
ode into Perl.)

Another example with two type systems would

be a Python optimizer whi
h would inline string

operations, and would therefore want to lo
ate all

variables with a string type. Here, the inferred

types would have to map into the types fstring, not-

stringg.

8 Future Work

There are many appli
ations whi
h
an bene�t from

type information. Progress on a Python-to-Perl

translator is now possible using the ATI informa-

tion; type
he
kers and optimizers also rely on type

information. A tool to
onvert lega
y Python
ode

to an optional stati
 typing s
heme might be inter-

esting too.

ATI may bene�t by embra
ing and extending type

inferen
e resear
h done for other dynami
ally-typed

languages. This in
ludes taking
ontrol
ow into

a

ount [26℄, and adding run-time
he
ks to
onvert

programs into a form that
an be type-
he
ked at

ompile-time [3℄.

Dynami
 ATI would be a logi
al variation of this

work. A modi�ed Python interpreter
ould re
ord

type information as a program runs, over multiple

runs, later inferring types of variables based on the

run-time information.

I would also like to extend the empiri
al type anal-

ysis in Se
tion 6, using a wider sampling of Python

programs. This would further gauge the amount of

type
onsisten
y present in Python programs, and

ATI−Inferred
Type

Perl
 Type

string
number

none

list
tuple

dictionary

function
method

module
class

instance

scalar

scalar
(undef)

array

hash

subroutine

package

scalar
(blessed
reference)

Figure 10: Mapping to Perl types.

would give a good indi
ation of the general appli
a-

bility of ATI.

9 Con
lusion

Type inferen
e is a diÆ
ult task for dynami
ally-

typed languages su
h as Python. The type infor-

mation gathered, however, is essential for some ap-

pli
ations, su
h as the Python-to-Perl translator I

proposed.

By making aggressive assumptions about how pro-

grammers use variables in their programs | namely,

that variables maintain a
onsistent type throughout

| it is possible to make type inferen
es that would

not be possible with a more
onservative approa
h.

With aggressive type inferen
e, I have demon-

strated how type inferen
e may be done in Python

without requiring the programmer to supply expli
it

type information.

A
knowledgments

Shannon Jaeger and Jim Uhl proofread this pa-

per and made many helpful suggestions, as did

the anonymous referees and Jeremy Hylton. Also,

thanks to Roger Jaeger and the University of Cal-

gary Department of Computer S
ien
e for use of

their
omputer equipment while I was travelling.

Nigel Horspool suggested mapping store instru
tions

to their
orresponding variables. This work was sup-

ported in part by a grant from the National S
ien
es

and Engineering Resear
h Coun
il of Canada.

Appendix

In this se
tion, I present the methods used for stati

and dynami
 analysis, so that the results are repeat-

able and may be extended or reinterpreted.

Stati
 analysis of Python
ode was performed by

a program whi
h lexi
ally analyzed all .py �les in

a pa
kage using the tokenize module. Comments

and blank lines were ignored, so the \lines of
ode"

al
ulated for ea
h pa
kage is a

urate.

All NAME tokens reported by tokenize were ex-

amined for the names exe
, eval, exe
file, and

import . Con
eivably, use of the latter three

ould be
loaked by assigning them another name,

but this would be questionable programming pra
-

ti
e and was deemed unlikely. Another possible

problem would be
ode whi
h re-used the name of a

built-in fun
tion for a di�erent purpose; this would

Idle Loading test
ode.py

Gad
y Running gftest.py

Grail Loading http://www.python.org/

HTMLgen Running HTMLtest.test()

J-- Generating MIPS assembly for a

re
ursive-des
ent
al
ulator

Pystone Full exe
ution

Table 6: Tasks for dynami
 analysis.

arti�
ially in
ate the stati
 o

urren
e
ounts. In

fa
t, this is exa
tly what happened with Gad
y,

whi
h re-used the name eval, ne
essitating manual

analysis.

Other program
onstru
ts
ould prove detrimen-

tal to
ompile-time analysis too, su
h as apply(),

setattr(), and manipulations of di
t . A more

sophisti
ated stati
 analysis is required to determine

if an o

urren
e of one of these other
onstru
ts

would be problemati
.

For dynami
 analysis, a task was
hosen for ea
h

pa
kage whi
h was intended to exer
ise a reasonable

subset of the pa
kage's
ode. This proved diÆ
ult to

gauge for graphi
al appli
ations like Idle and Grail;

a future study should employ
ode
overage tools.

The
hosen tasks are shown in Table 6.

The Python interpreter was modi�ed to log a

number of events, in
luding:

1. Frame obje
t allo
ation and deallo
ation, and

their
orresponding
ode obje
ts.

2. Calls to the built-in fun
tions eval(),

exe
file(), and import ().

3. Exe
ution of the IMPORT NAME instru
tion.

Sin
e this instru
tion
alls import (), the

data reported for import in Table 2 was ad-

justed by the number of times IMPORT NAME was

exe
uted. This way, only the expli
it
alls to

import () are signi�
ant.

4. Exe
ution of the EXEC STMT instru
tion.

5. Exe
ution of the STORE NAME, STORE FAST, and

STORE GLOBAL instru
tions, the target variable,

and the type of that variable before and after

the instru
tion.

6. Instru
tion exe
ution, for instru
tion
ounting.

The generated log �les were later pro
essed to pro-

du
e the dynami
 data reported in Se
tion 6.

Referen
es

[1℄ A. Aiken and B. Murphy. Stati
 type inferen
e

in a dynami
ally typed language. Pro
eedings of

the 18th ACM POPL, 1991, pp. 279{290.

[2℄ J. Ay
o
k. Compiling Little Languages in

Python. Pro
eedings of the 7th International

Python Conferen
e, 1998, pp. 69{77.

[3℄ R. Cartwright and M. Fagan. Soft Typing. Pro-

eedings of the ACM PLDI '91 Conferen
e,

1991, pp. 278{292.

[4℄ Corporation for National Re-

sear
h Initiatives. Grail.

http://grail.
nri.reston.va.us/grail/.

[5℄ C. Chambers. The Design and Implementation

of the SELF Compiler, an Optimizing Compiler

for Obje
t-Oriented Programming Languages,

Ph.D. Dissertation, Stanford University, 1992.

[6℄ K. D. Cooper and K. Kennedy. EÆ
ient Com-

putation of Flow Insensitive Interpro
edural

Summary Information. SIGPLAN 19, 6 (June

1984), pp. 247{258.

[7℄ M. Faassen. Re: The way to a faster

python [was Python IS slow !℄ Posting to

omp.lang.python, May 1999.

[8℄ R. Friedri
h. HTMLgen. http://starship.-

python.net/
rew/friedri
h/HTMLgen/-

html/main.html.

[9℄ R. Hindley. The Prin
ipal Type-S
heme of an

Obje
t in Combinatory Logi
. Transa
tions of

the Ameri
an Mathemati
al So
iety 146 (De-

ember 1969), pp. 29{60.

[10℄ O. I. Hougaard, M. I. S
hwartzba
h, and H.

Askari. Type Inferen
e of Turbo Pas
al. Soft-

ware: Con
epts and Tools 16 (1995), pp. 160{

169.

[11℄ J. Hugunin. Python and Java: The Best of

Both Worlds. Pro
eedings of the 6th Interna-

tional Python Conferen
e, 1997.

[12℄ K. Jensen, N. Wirth, A. B. Mi
kel, and J. F.

Miner. Pas
al User Manual and Report (Third

Edition), Springer-Verlag, 1985.

[13℄ R. E. Johnson, J. O. Graver, and L. W.

Zurawski. TS: An Optimizing Compiler for

Smalltalk. OOPSLA '88 Pro
eedings, 1988, pp.

18{26.

[14℄ B. T. Lewis. An On-the-
y Byte
ode Com-

piler for T
l. Pro
eedings of the Fourth USENIX

T
l/Tk Workshop, 1996.

[15℄ B. T. Lewis. Private
ommuni
ation. Septem-

ber, 1999.

[16℄ R. E. Masse. Evolutionary Prototyping: \Add

Later" Stati
 Types for Python. Pro
eedings of

the 7th International Python Conferen
e, 1998,

pp. 91{101.

[17℄ T. C. Miller. Type Che
king in an Imperfe
t

World. Pro
eedings of the Sixth ACM POPL,

1979, pp. 237{243.

[18℄ R. Milner, M. Tofte, and R. Harper. The De�-

nition of Standard ML. MIT Press, 1990.

[19℄ R. Milner. A Theory of Type Polymorphism in

Programming. Journal of Computer and Sys-

tem S
ien
es 17 (1978), pp. 348{375.

[20℄ J. Riehl. PyFront: Conversion of Python to C

Extension Modules. Pro
eedings of the 7th In-

ternational Python Conferen
e, 1998, pp. 79{

90.

[21℄ J. A. Robinson. A Ma
hine-Oriented Logi

Based on the Resolution Prin
iple. Journal of

the ACM 12, 1 (January 1965), pp. 23{41.

[22℄ F. R. Rouse and W. Christopher. A T
l to

C Compiler. Pro
eedings of the Third USENIX

T
l/Tk Workshop, 1995, pp. 115{122.

[23℄ F. R. Rouse and W. Christopher. A Typing

System for an Optimizing Multiple-Ba
kend

T
l Compiler. Pro
eedings of the Fifth USENIX

T
l/Tk Workshop, 1997.

[24℄ J. M. Skaller. RFC: Viper: yet an-

other python implementation. Posting to

omp.lang.python, August 1999.

[25℄ R. Sethi. Programming Languages: Con
epts

and Constru
ts. Addison-Wesley, 1989.

[26℄ O. Shivers. Data-Flow Analysis and Type Re-

overy in S
heme. In Topi
s in Advan
ed Lan-

guage Implementation, P. Lee, ed., MIT Press,

1991, pp. 47{87.

[27℄ K. Slonneger and B. L. Kurtz. Formal Syn-

tax and Semanti
s of Programming Languages.

Addison-Wesley, 1995.

[28℄ K. Walker and R. E. Griswold. Type Inferen
e

in the I
on Programming Language. TR 93-32a,

University of Arizona Department of Computer

S
ien
e, 1996.

[29℄ L. Wall, T. Christiansen, R. L. S
hwartz, and

S. Potter. Programming Perl (2nd Edition).

O'Reilly, 1996.

[30℄ A. Watters. Gad
y. http://www.
hordate.-

om/gadfly.html.

