Psychology of everyday things

You now know:

- many so-called human errors are actually errors in design
- human factors became important in WWII due to human performance limitations being reached when handling complex machinery

You will soon know these important concepts for designing everyday things

- affordances
- causality
- visible constraints
- mapping
- transfer effects
- population stereotypes
- conceptual models
- individual differences
- · why design is hard

Saul Greenbe

Population stereotypes Populations learn idioms that work in a certain way - red means danger - green means safe • But idioms vary in different cultures! - Light switches America: down is off Britain: down is on - Faucets America: anti-clockwise on Britain: anti-clockwise off • Ignoring/changing stereotypes? - home handyman: light switches installed upside down - calculators vs. phone number pads: which should computer keypads follow? • Difficulty of changing stereotypes - Qwerty keyboard: designed to prevent jamming of keyboard - Dvorak keyboard ('30s): provably faster to use Saul Greenbe

Conceptual model

People have "mental models" of how things work

conceptual models built from:

- affordances
- causality
- constraints
- mapping
- positive transfer
- population stereotypes/cultural standards
- instructions
- interactions
- familiarity with similar devices (positive transfer)

models may be wrong, particularly if above attributes are misleading

Saul Greenberg

models allows people to mentally simulate operation of device

Who do you design for?

People are different

It is rarely possible to accommodate all people perfectly

- design often a compromise
 - eg ceiling height: 8'
 - but tallest man: 8' 11"!

Rule of thumb:

- design should cater for 95% of audience (ie for 5th or 95th percentile)
 but means 5% of population may be (seriously!) compromised
- Designing for the average a mistake
 - may exclude half the audience

Examples:

- cars and height: headroom, seat size
- computers and visibility:
 - font size, line thickness, color for color blind people?

Saul Greenb

Computer user	s:	
• novices	walk up and use systems interface affords restricted set of tasks introductory tutorials to more complex uses	most kiosk + internet systems
• casual	standard idioms recognition (visual affordances) over recall reference guides interface affords basic task structure	most shrink- wrapped systems
• intermediate	advanced idioms complex controls reminders and tips interface affords advanced tasks	custom software
• expert	shortcuts for power use interface affords full task + task customization	

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Marketplace pressures

- adding functionality (complexity) now easy and cheap computers
- · adding controls/feedback expensive
 - physical buttons on calculator, microwave oven
 - widgets consume screen real estate
- design usually requires several iterations before success - product pulled if not immediately successful

People often consider cost and appearance over human factors design

Saul Greenbe

Saul Greenb

- bad design not always visible
- people tend to blame themselves when errors occur
 - "I was never very good with machines"
 - "I knew I should have read the manual!"
 - "Look at what I did! Do I feel stupid!"

• eg the new wave of cheap telephones:

- accidentally hangs up when button hit with chin
- bad audio feedback
- cheap pushbuttons-mis-dials common
- trendy designs that are uncomfortable to hold
- hangs up when dropped
- functionality that can't be accessed (redial, mute, hold)

What you now know

Human factors comes of age in WWII

• human control of complex machinery could not be maintained even after high degree of training

Many so-called human errors are actually errors in design

• don't blame the user!

Designers help things work by providing a good conceptual model

- affordances
- causality
- constraints
- mapping
- positive transfer
- population stereotypes

Design to accommodate individual differences

• decide on the range of users

Design is difficult for a variety of reasons that go beyond design

Saul Greenberg

