Network Heartbeat Traffic Characterization

Mackenzie Haffey
Martin Arlitt
Carey Williamson
Department of Computer Science
University of Calgary

What is a Network Heartbeat?

- An event that occurs repeatedly at fairly regular intervals within a particular observational time frame
- In our case, the event is a connection initiated between two specific transport-level endpoints on a network (i.e., periodic network communications)
- Some heartbeats are <u>regular</u> (e.g., NTP)
- Some heartbeats are <u>irregular</u>, since they can be disrupted by user behaviour, NAT/DHCP, network outages, premature termination, or non-deterministic effects

UNIVERSITY OF CALGARY Network Traffic Examples

Random Traffic

Regular Heartbeat

Irregular Heartbeat

NTP Heartbeat

- Network heartbeats can be useful as an indicator of the operational health of an edge network:
 - Presence (or absence) of heartbeats for expected services
- Network heartbeats can indicate unexpected or undesired traffic on your network:
 - Peer-to-Peer (P2P) applications
 - _Scanning
 - Malicious software (malware), such as botnets, which use periodic communications for command/control channels
- In general, there is a limited understanding of the use and characteristics of heartbeats in real networks, and how to leverage heartbeat information effectively

Background and Related Work

- Periodicity detection
 - -Statistical methods [Hubballi and Goyal 2013]
 - -Spectral methods [Assadhan et al. 2014] [Heard et al. 2014]
 - -Autocorrelation [Gu 2008] [Qiao 2013] [van Splunder 2015]
- Malware detection in Intrusion Detection System (IDS)
 - -Baywatch [Hu et al. 2016]
 - -Disclosure [Bilge et al. 2012]
 - -Stratosphere [Garcia 2015]
- Heartbeat identification [Bartlett 2011] [Heard 2014]

- Introduction/Motivation/Related Work
- Our Campus Edge Network
- Heartbeat Detection Methodology
- Heartbeat Classification Taxonomy
- Heartbeat Characterization Study
- Discussion and Implications
- Conclusions

- University edge network with about 32,000 students and about 3,000 faculty and staff
- Includes both managed and unmanaged subnets
- Many unmanaged subnets are BYOD environment
- Strong diurnal usage pattern reflecting work days
- Peak inbound traffic near 4 Gbps; outbound 1 Gbps

Detecting Periodic Traffic (1 of 2)

To detect periodicity, we consider connection 5-tuples:

- $_{-}$ c = (ts, h_s , h_r , dest_{port}, proto)
- Construct "candidate connections sets" based on the same h_s, h_r, dest_{port}, and proto
- Prune candidate connection sets with too few or too many connections to manifest periodicity
- Compute inter-arrival times for connections in a set
- If the variance of inter-arrival times is below a specified threshold (Θ_{var}), then the candidate connection set is said to be periodic; otherwise, it is not periodic

UNIVERSITY OF CALGARY Detecting Periodic Traffic (2 of 2)

For every candidate connection set S:

- * All done in SQL
- * We conduct this process on the whole log, daily logs, and hourly logs, and then merge results

Sensitivity Analysis

- Data collection from Jan. 1, 2017 Feb 18, 2017
- Data was collected from a mirrored stream of all network traffic entering/leaving U of C campus
- Data was processed and stored in Bro logs in real time
 - Records all TCP, UDP, and ICMP traffic "connections"
 - 15 billion connections during our observational period
 - _3.5 TB worth of data

Table 1: Statistical summary of empirical dataset and heartbeats detected.

Time	#	Connections			Candidate Connection Sets			Heartbeats		
Granularity	Logs	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
7 Weeks	1	15.2 B			5.1 B			115,655		
1 Day	48	225 M	317 M	405 M	99 M	125 M	163 M	2,046	5,019	7,614
1 Hour	1,152	6 M	13.2 M	27 M	3.7 M	5.9 M	13 M	37	187	988
Merged	1	15.2 B			18 B			244,569		

- Composition of heartbeat traffic differs a lot from aggregate traffic
- More UDP and User/Dynamic ports due to CDN, P2P, and botnets
- Most periodic ICMP traffic is scanning related

Heartbeat Classification Attributes

Heartbeat Regularity

Regular vs. Irregular

Heartbeat Direction Inbound vs. Outbound

Heartbeat Liveness

Alive vs. Dead

Application Architecture P2P vs. Non-P2P

Heartbeat Classification Taxonomy

- Regular heartbeats are persistent and continuous, occurring at regular intervals throughout the entire duration of the observation
- Regular
 - Regular heartbeats are intuitive, but make up less than 0.01% of heartbeats
 - Typically daily or weekly patterns
 - -Primarily on managed portions
 - Primarily related to well-known protocols: NTP, HTTP, and DNS
- Irregular
 - Should be considered normal too!
 - Irregularity from DHCP churn, NAT, powering off, BYOD environment

Regular

Irregular

- Heartbeats can be inbound or outbound
- Inbound heartbeats
 - Originate from outside our campus edge network
 - -University-hosted services (e.g., Linux OS mirror site)
 - Periodic scanning (some malicious, some benign)
 - Services interacting with users on our network
 - Some P2P and CDN-related traffic
- Outbound heartbeats
 - Originate from within our campus edge network
 - Primarily generated by users interacting with services
 - Other significant contributors were CDN node and P2P

UNIVERSITY OF Heartbeat Liveness

Heartbeats can be alive or dead

Alive

- Heartbeats that elicit a response from the recipient
- These make up the majority of heartbeats
- -Usage pattern is similar to overall periodic
- _traffic pattern
- A larger proportion of outbound heartbeats were alive than inbound heartbeats

Dead

- -Heartbeats that do not elicit a response from the recipient
- _Surprisingly large number of heartbeats were dead (29%)
- Scanning for hosts and services
- Service vendors attempting to talk to hosts on our network
- For the P2P traffic, this is likely caused by churn

Alive

Dead

Peer-to-Peer (P2P) Heartbeats

- P2P heartbeats make up a large proportion of all the heartbeats observed (48%)
- These applications included BitTorrent, PPStream,
 ZeroAccess botnet, and Sality botnet

■ P2P

- Make up the most of the heartbeat traffic observed
- Each peer sends periodic updates to other known peers, which generated a high number of heartbeats
- -Almost all done over UDP
- Contributed greatly to the number of dead heartbeats, likely due to churn of P2P applications

Non-P2P

- Similar protocol/port usage to aggregate traffic: primarily TCP, concentrated in system port range
- All regular heartbeats detected were from non-P2P apps

Heartbeat Classification Taxonomy

Heartbeat Characterization Study

- During our work, we identified several interesting characteristics of the heartbeat ecosystem:
 - Structural Characteristics Characteristics related to the defining properties of a heartbeat – Period and Port
 - **Temporal Characteristics** Characteristics related to the period and lifespan (longevity) of heartbeats
 - **Subnet Characteristics** Characteristics related to how heartbeats manifest on different types of subnets
 - Application Characteristics Characteristics related to how different application architectures, services, or vendors make use of heartbeats

- Clustering patterns reveal points, horizontal bands, and vertical bands
- Prominent services or applications can be identified by analyzing clusters

Scatter Plot of Non-P2P Heartbeats

■Two pertinent properties:

- Period: The time between successive connections
- Lifespan: Elapsed time between first and last conn
- Regular heartbeats typically fall into very structured periods
- Irregular heartbeats are much less structured
- Irregular heartbeats typically have shorter periods and lifespans

Regular Heartbeats

Irregular Heartbeats

- For irregular heartbeats,
 the periods and lifespans
 tend to be relatively short
- Wide range periods from 10 s to 8.8 days; lifespans from 30 s to 47.9 days
- Moderate positive correlation between period and lifespan (+0.73)

Subnet Analysis – Outbound Heartbeats

- Different subnet types have different types of heartbeats
- Managed subnets tend to generate fewer outbound heartbeats (except for NAT)
- Managed subnets produce different types of heartbeats depending on their purpose
- BYOD subnets generate many outbound heartbeats from P2P, services, and end user applications

Subnet Analysis – Inbound Heartbeats

- Managed subnets receive lots of inbound heartbeats from scanning and university hosted services
- Specific types of heartbeats differ depending on the purpose of each subnet
- BYOD subnets have fewer inbound than outbound
- Inbound BYOD heartbeats have similar composition to outbound heartbeats, but also include scanning

Inbound

Subnet Analysis: Inbound versus Outbound

Inbound

Outbound

Different P2P applications often produce heartbeats with similar characteristics, but not always

BitTorrent:

- A popular P2P file sharing application, uses UDP exclusively,

many dead heartbeats

PPStream:

- An East Asian P2P streaming application, uses UDP exclusively, mostly dead heartbeats

ZeroAccess:

- A P2P botnet, uses UDP exclusively, all dead heartbeats

Sality:

- Another P2P botnet, uses UDP and TCP, almost all heartbeats are alive

UNIVERSITY OF P2P Analysis (2 of 2)

- Different vendors use heartbeats in different ways
- Microsoft:
 - Software updates, information gathering, services provided by Microsoft
- Google:
 - Services provided by Google to users
- Amazon:
 - Third party services hosted on Amazon's servers
- Akamai:
 - Internal testing and reporting,
 Akamai NetSession Interface
- Valve:

- Video games and in home streaming

UNIVERSITY OF CALGARY Vendor Analysis (2 of 2)

Summary of Key Observations

Heartbeat Characteristics

- -Heartbeats are generally transient and ephemeral
- -Heartbeats are typically short in both period and lifespan
- -Applications tend to generate heartbeats with similar periods and port numbers
- -Heartbeats are typically produced by end-user applications

Heartbeat Trends

- -P2P applications generate a large number of heartbeats
- -Almost all heartbeats are irregular
- -Heartbeats are mostly outbound (on edge networks)
- -A large number of heartbeats are dead due to churn and stale connection information

- System administrators of managed infrastructure can use heartbeat information to determine if any (critical) systems have heartbeats to unexpected places
- Security analysts could use heartbeat information to detect unusual applications running on a BYOD network that might pose a risk to the organization
- We need effective ways to make heartbeat information accessible for these purposes, as well as for network operators (visualization can help!)

UNIVERSITY OF Example Heartbeat Visualizations using Gephi

Akamai Node

Sality Botnet

BitTorrent

ZeroAccess Botnet

- Network heartbeats: simple but powerful mechanism
 - Network monitoring
 - Security monitoring
 - Effective mechanism for detection of P2P, scanning, malware, and botnet traffic, as well as odd/stale system configurations
- Provides a means to assess the operational health of a campus edge network

Future work:

- Sensitivity to parameters used for heartbeat detection
- In-depth analysis of heartbeats for NAT and DHCP
- Coping with obfuscation of heartbeats for malware
- Automating the analysis and interpretation of heartbeats

Questions?