Speed scaling in fork-join queues: a comparative study
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ABSTRACT

Frequency scaling plays an important power-saving role
in computer systems. In fork-join systems, dynamic adap-
tation of the server speeds can significantly reduce system
power consumption while maintaining high throughput. In
previous work, we studied a rate adaptation policy that dy-
namically chooses server speeds based on the difference in
join-queue lengths, with each server knowing only its own
join-queue length and that of one other server. In this work,
we increase the information available to each server, and
choose speeds based on the knowledge of the join-queue
lengths of two other servers. We show that, under a specific
canonical configuration of the service rates, the new system
has exactly the same throughput and subtask dispersion as
before, but with reduced power consumption. We use time-
reversal analysis to derive the exact stationary performance
of this new model under saturation conditions, and use sim-
ulation to study more general cases.

1. INTRODUCTION

Fork-join queueing models are important abstractions of
computer systems in which jobs are split into a set of tasks
that are processed in parallel by independent servers. The
served tasks are eventually merged back together before
leaving the system. Examples of this type of computation
are MapReduce, RAID (Redundant Array of Independent
Disks), and parallel database queries. Figure 1 shows a fork-
join queue. Jobs arrive externally, and are forked into K
tasks that are stored in the fork-queues while they wait for
a free server. Each server fetches tasks from its fork-queue,
and once it finishes its work, the served tasks are stored
in the join-queues. Once all the sibling tasks of a job are
served, the join occurs, and the jobs then leave the system.

In fork-join queueing systems, we can reduce power con-
sumption using speed scaling methods. In single server sys-
tems, the speed is usually dynamically set based on the num-
ber of jobs in the queue [1]. In fork-join systems, however,
it makes sense to slow down the servers whose join-queues
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Figure 1: Sketch of a fork-join queueing system.

contain more tasks than the others, since a job can leave the
system only after its last task completes.

In practice, when the number of parallel servers is high, as
in many MapReduce applications, it is difficult for a server
to know the join-queue lengths at all the other servers. For
this reason, in [7, 9], we presented two rate adaptation algo-
rithms in which each server decides its speed based on local
knowledge of the difference between its join-queue length
and that of a neighbour. We have shown that under Marko-
vian assumptions and saturation conditions, the algorithms
lead to join-queue lengths with finite mean. In this paper,
we build upon the Bimodal rate adaptation algorithm [7],
in which each server chooses between two possible speeds
according to its state (i.e., higher speed if it has a shorter
join-queue than its neighbour, and slower speed otherwise).

In this work, we explore the benefits of increasing the in-
formation available for each server. Specifically, we study a
trimodal (three-speed) rate adaptation algorithm that bases
its decisions on the knowledge of the differences between its
join-queue length and those of two other servers (analogous
to power-of-d choices [4]). We provide an exact analysis of
the join-queue length distribution for this new model under
saturation (i.e., there is always a job waiting to be served),
and use stochastic simulation to explore other cases. The
exact analysis uses the definition of p-reversibility to derive
the system’s throughput, the stationary distribution of the
queue length differences, and the system’s power consump-
tion. We compare the results with those previously obtained
in the literature for the bimodal model. The outcomes of our
investigations can be summarised as follows:

e We introduce a canonical trimodal rate adaptation al-
gorithm, which decides the servers’ speed based on
the join-queue lengths of two other neighbours. If the
server has a shorter join-queue than both neighbours,
then it works at the fastest speed. If its join-queue
length matches or exceeds those for both neighbours,



it works at the slowest speed. Otherwise, it works at
a speed that is the mean of the previous two.

e We provide an exact analysis of the canonical trimodal
algorithm under Markovian assumptions and satura-
tion. Although the CTMC underlying the trimodal
model is very different from that of the bimodal model,
and does not have the same time-reversal properties,
we show that the system throughput and the distribu-
tion of the join-queue lengths are identical. We found
this result quite surprising and intriguing.

e We prove that, although the canonical trimodal model
does not improve control of the join-queue length com-
pared to the bimodal model, it guarantees lower power
consumption. That is, the extra information available
to servers allows the trimodal system to achieve the
same performance as the bimodal system, but with
lower power cost.

e Finally, we use stochastic simulations to study the sys-
tem in heavy load and compare the result with those
obtained by the analytical model. Moreover, we study
the trimodal algorithm when the intermediate speed
is chosen differently from the mean of the lowest and
highest speeds. In fact, simulations suggest that other
settings for the intermediate speed provide interest-
ing tradeoffs between system throughput, join-queue
length, and power consumption.

Related work

Fork-join systems have been widely studied in the queue-
ing theory literature, but very few exact analytical results
are available. Under the Flatto-Hahn-Wright assumptions
(independent Poisson arrivals and exponential service times),
the solution for K = 2 servers is known [2, 14]. The wide
adoption of distributed computation by modern data centers
has re-invigorated interest in fork-join systems. Some recent
works have introduced accurate approximate analyses [6, 11]
for servers with constant speed, while in [12] the authors use
job statistics to help determine the servers’ rates in such a
way that the join-queue lengths are reduced.

Similar to the work proposed here, in [7] we studied a
model in which servers adapt their speeds according to the
difference between their join-queue length and that of an-
other server. The analytical results rely on an important
property of the Markov chain underlying the queueing sys-
tem, i.e., it is p-reversible. Informally, a p-reversible Markov

chain has the property that its time-reversed process is stochas-

tically indistinguishable from the original one if we rename
the states according to function p [8]. This property, in
the form known as dynamic reversibility, has been previ-
ously used to study the kinetics of polymer crystallization
in a similar way to what we do in this work [3]. In this
paper, we extend the results of [7] by computing the power
consumption of the bimodal algorithm and the marginal dis-
tribution of the join-queue length differences. Moreover, we
introduce the trimodal model in which the algorithm adapts
the servers’ rates based on the differences between their join-
queue lengths. Although the trimodal’s Markov chain is p-
reversible under certain assumptions on the servers’ rates
(i.e., canonical trimodal), the renaming function is com-
pletely different from that of the bimodal, and hence its
analysis is entirely new.

Paper structure

The paper is structured as follows. Section 2 summarizes
prior results for the bimodal model, and presents new results
on its symmetry and power consumption. Section 3 intro-
duces the new trimodal model and presents its mathematical
analysis under the saturation assumption. Section 4 supple-
ments this analysis with simulation results that explore more
general cases. Finally, Section 5 concludes the paper, with
formal proofs provided in the Appendix.

2. THE BIMODAL MODEL

In [7], we studied a queue length control mechanism that
can be applied to fork-join queues, and provided an ex-
act analysis under the assumption of iid exponential service
times and saturation. The latter assumption requires the
fork queues to always have at least one task, and is a good
approximation for the heavy load case studied in Section 4.
In [7], each server has knowledge of the difference between its
own join-queue length and that of a neighbour. The neigh-
bourhood relation is defined in a circular way, i.e., if each of
the K > 2 servers is labelled with a number 1,..., K, then
the neighbour of server k is k™, where k¥ = (k mod K)+1.
Let X%(t) = (n1,...,nx)(t) be the state of the system at
time ¢, where ny = £, — £+ and ¢ is the join-queue length
at server k. If the next job completion occurs at time ¢ + At
at server k, then X% (t+At) = X% (t)+er —e,—, where ey, is
the K-dimension vector with a 1 in position k£ and all other
elements are 0, and &~ = ((k+ K —2) mod K)+ 1. When
the service times are state-dependent exponential random
variables, the stochastic process X% (t) is a CTMC. The bi-
modal model of [7] is defined in such a way that each server
operates at a high speed p if its join-queue is shorter than
that of its neighbour, and at a low speed 7, otherwise.

DEFINITION 1 (BIMODAL MODEL). The bimodal model
is the process X% (t) with state space

K
SK:{n:(nh...,nK):niGZ/\anZO} (1)
k=1

and transition rates for h — 07 defined as follows:

Pr{X%(t+h) =n—e,— +ep | X%(t) =n} = A(ng)h+o(h)

K

deﬁ@+hw=n|X%a>=n}=1—<§jxww>h+4m
k=1
where:

Amw:{“ ifmi <0 @)

n  ifng >0

This model has the following stationary performance in-
dices [7]. Let % (n, 1) be the stationary distribution (when
it exists) for the bimodal model. The balance index is a
measure of the effectiveness of this control mechanism in
maintaining short join-queues. The throughput is the ex-
pected number of joins per unit time in steady-state.

DEFINITION 2  (BALANCE INDEX). The balance index for
stable bimodal models is defined as follows:

Bic(n,p) = Y wi(n,m, m)p(n),

neSy



where p(n) is the sum of positive components of n, i.e.,
p(n) = 21521 NkOn, >0 where dp is 1 if proposition P is true,
and 0 otherwise.

DEFINITION 3 (THROUGHPUT). The throughput for sta-
ble bimodal models is defined as follows:

Tic (n, ) = % > miemm )Y An) -

neSy k=1

2.1 Previous results on the bimodal model

In [7], we studied the process X% (t) of Definition 1 un-
derlying the bimodal model. Here, we summarise previously
proven results, which we will use subsequently.

e For any finite K, the CTMC X% (t) is ergodic if and
only if n < pu.

e Under the stability condition, the CTMC X% (¢) is dy-
namically reversible under the renaming:

p(n17"-7nK) = (nK>~~'7nl)

and its stationary distribution is:

(n)
b 1 n\"
g (0,1, 1) = m (; ,

where the normalizing constant G% (1, 1) is:

K\ (K -1 .
G’}((n,u):1+; <j><j1>(K—J)
5(77/M7K—J:1—K),

where 8 is Euler’s incomplete Beta-function:
B(z.a.b) = / w1 —u) .
0

e In stability, the balance index is given by:

b 1 n/p \*
Bicn. ) = G (n, ) (1 —n/u)

()0

Jj=1

which can be normalised on K.

e In stability, the throughput of the K servers is:

1
Ty (n, p) = m <K77

+ i (n+ (K — j)m) (I;) (1;(-;)

and T}b(/K is the throughput of the system.

e Despite the formulation in terms of the incomplete S-
function, the normalising constant and the stationary
performance indices can be computed exactly with a
finite number of elementary operations.

2.2 New results on the bimodal model

In this section, we derive some novel results for the bi-
modal model. We start with a corollary of the result on the
stationary distribution:

COROLLARY 1. If X% (t) is the process in Definition 1,
and n € Sk, then:

W?{(ny 7, /“L) = 71'?((—117 7, ,LL) .

The proof is trivial, since the sum of positive components of
n equals the opposite of the sum of the negative components.
A second important observation is that the marginal distri-
bution must be symmetric with respect to state 0. More
formally, for n € Z, the marginal distribution of the bimodal
model is defined as:

()= Y

neSg:
n=(n,na,..., ng)

T (0,1, 1) -

Moreover, we consider the following definitions:
T o) =Y g, p),  m (np) =Y wE (=, ).
n=1 n=1

The next corollary proves the symmetry of 7°* with respect
to state 0. This property is useful when computing a closed-
form expression for 7% (n,n, 1).

COROLLARY 2. For the process X% (t) of Definition 1:

1. 71—?(*(/”'37771’0 = W,;(*(_nﬂ?nu) fO’I’ alln € N}

2. 73 (n,p) = 7 (0, ).

Proof. For n € N with n # 0, consider two subsets of Sk:
Sk ={n €Sk |n=(n,n2,...,nkx)}

consisting of the states (n,n2,...,nk), i.e., with fixed first
component and arbitrary remaining ones, and

Sg"={neSk |n=(—n,n2,...,nKx)}.

Observe that for each state n € Sk, there exists a corre-
sponding opposite state —n € S;", and vice versa. Since
n and —n have the same stationary probability (by Corol-
lary 1), the first statement is proved. The second one follows
from the first straightforwardly. []

The following result expresses the marginal distribution
for the model. The proof is given in the Appendix.

THEOREM 1. Let X}’((t) be the process of Definition 1
with K > 2. The marginal stationary distributions of X% (t)
with rates n and p such that 0 < n < p are:

K-2
Gl (n, Wi (0,m,p) =14 ) <K N 1) (I;__f)

j=1 J
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Figure 2: Example configurations of the trimodal model.

and, for n > 0:

G (n, W) (n,m, ) = G (n, L) (—n,m, )
. n+K-—2 n "
o K -2 n
2 (Kk-1\[K+n-2 <n>Kj1+"
+ ‘ ) =
; J j—1 H

Jj=1
gFl(K+n—1,K—j—1,K+n—j,%>.

The aggregated probabilities of observing a positive (resp.
negative) state in one of the servers is:

G (n, )5 (n, 1) = G (n, w7 (n, 1)

() (e ()
6<n/M,K—j71—K> .

From the marginal distributions, we can derive the sys-
tem’s power consumption. Specifically, we assume that the
power consumption of a computational unit scales with a
factor a, where 2 < a < 3 (see, e.g., [10]). Thus, the power
consumption of the bimodal model is given by Corollary 3.

COROLLARY 3. Let X%(t) be the bimodal model of Defi-
nition 1 with K > 2. The power consumption of the bimodal
model with rates 7 and pv such that 0 < n < p is:

P (n,pu) = K (Trl}?

Proof. The proof follows straightforwardly from Corollary 2
and by the symmetry of the system. [

(m, 1) (n™ + ) + 7 (0,m, u)n“) :

3. THE TRIMODAL MODEL

In this section, we study a new model in which each
server k is aware of the differences between its join-queue
length and those of its two neighbours, k= and k*. Three
cases are possible: the k-th join-queue is longer than or
equal to those of its two neighbours; its length is in be-
tween those of its neighbours; and the k-th join-queue is
the shortest. We use three speeds Ao, A1, and Ag for these
cases, respectively. Figure 2 shows examples of each. Let
X (t) = (n1,...,nK)(t) be the process defined as X% (t)
except for the transition rates that are as in Definition 4.
Again, under state-dependent exponential service times, the
process X1 (t) is a CTMC.

DEFINITION 4  (TRIMODAL MODEL). The trimodal model
is the process Xyt (t) with state space Sk as in Equation (1),
and transition rates for h — 07 defined as follows:

Pr{X{(t+h)=n—e,— +e | Xi(t)=n}

= )‘(nk* ’ 7"’@)}7‘ + O(h) ’ (3)

Pr{X{(t+h)=n| X{({t)=n}

=1- <Z )\(nk— , —nk)) h+ O(h) ) (4)

where:
X ifz<0AYy<0
Mz,y) =< 1  if(@<0Ay>0)V
A2 ifz>0Ay>0

(x>0Ay<0). (5

We can define the balance index and the throughput for
the trimodal model as we have done for the bimodal model.
Let 7 (n, Ao, A1, A2) be the stationary distribution of the
trimodal model when it exists.

DEFINITION 5  (BALANCE INDEX). The balance indez for
stable trimodal models is defined as follows:

B%(/\07A15)‘2) = Z ﬂ’%(nvAOy)‘la)‘Q)p(n)?

neSg
where p(n) is the sum of positive components of n.

DEFINITION 6  (THROUGHPUT). The throughput for sta-
ble trimodal models is defined as follows:

K
. 1
T (Mo, A1, A2) = e § T (0, Ao, A1, Az) § AMng—, —ng)
k=1

neSg

3.1 Analysis of the trimodal model

Each server in the trimodal model has more information
than in the bimodal model, and hence we expect better
performance. The problem is how to regulate the three
speeds Ao, A1, A2. Here we study the specific configuration
A1 = (Ao + A2)/2, i.e., when the join-queue length is in be-
tween those of the two neighbours, the service speed is the
average of the minimum (Ao) and maximum (\2) speeds. For
this specific configuration, we prove a very surprising result:
the stationary distribution, throughput, and balance index
are exactly the same as those of the bimodal model with
n = Ao and g = A2, even though the infinitesimal generator
for X (t) is very different from that of X% (t). However,
the trimodal model has a key advantage with respect to
the bimodal, namely lower power consumption. Indeed, al-
though the configuration A1 = (Ao + A2)/2 does not improve
throughput or lower the balance index, we can reduce power
consumption compared to the bimodal model. Hereafter, we
refer to the trimodal model with A1 = (Ao + A2)/2 as canon-
ical trimodal model, and exclude A1 from the notation for
the stationary distribution and performance indices.

THEOREM 2. The canonical trimodal model for K > 2 is
stable if Ao < Aa. In this case, its stationary distribution is:

L ()™ ©)
Gz (Mo, Az) \ A2 ’

G% (o, A2).

TFK(II )\0, Az)

where G (Mo, A2) =



To prove Theorem 2, we follow a constructive approach
by deriving the expression for the stationary distribution
from the properties of p-reversible CTMCs, as reported the
Appendix. First, we show that X" (t) is p-reversible, under
the assumption of ergodicity.

THEOREM 3. Let K > 2. If Xi(t) is ergodic, then it is
p-reversible (also dynamically reversible) under renaming:

p(n) =n" (7

R ,—anl,—’nK).

where n™* = (—na,...

Before proving Theorem 3, we study some properties of
random walks in X7 (t). Let u be a path starting from n and
characterised by the arrivals of jobs at servers (c1, ca, ..., cr)
with ¢; € {1... K} and T € N*:

t t
Ay Acg Aey
u:n—>n—|—ecl—ef—>~~~—>n+g €., — e.-
1 w
w=1 w=1
T T
Neg
~—>n—|—§ €c,, — ec’;‘
w=1 w=1

The next proposition allows us to state that for each path
u, we can define a reversed path u according to the renam-
ing specified in Theorem 3.

L A )
PROPOSITION 1. For each transition n == n+e.—e,— in
the transition graph of X (t), there exists an inverse tran-

sition (n + e, — e )T 2oy R where:
e if \c = A1 then A\, = A1 and p(n +e. —e.—) = p(n),
e if \e = Xo then A\, = X2 and p(n+e.—e.-) = p(n)+1,

e if \c = X2 then A\, = X\o and p(n+e.—e.-) = p(n)—1.

PRrOOF. The proof is trivial. Indeed it is sufficient to ob-
serve that the inverse transition adds one unit in position c
and removes one from position ¢~. [

We are now in position to prove Theorem 3.

PROOF OF THEOREM 3. In order to prove that X}{(¢) is
dynamically reversible with respect to the renaming given
by Equation (7), we have to prove that conditions (K1) and
(K2) of Lemma 1 in the Appendix are satisfied.

In order to verify condition (K1), we need to compute the
residence time in each state n € S. Indeed, the residence
time in n € S is exponential with rate:

K K
X2 — A
;—1 Ang—, —ng) = KXo + (2270) ;,1: Onik0 -

where d,,,-0 is 1 if n; # 0, and 0 otherwise. To simplify the
proof, we use 7 to denote the quantity (A2 — A\o)/2. Hence,
the definition of A(z,y) can be expressed as follows:

Ao ife<0Ay <0
X+y f@<0Ay>0)V(xr>0Ay<0).
M+2y ifxz>0Ay>0

Az, y) =

The proof is by induction on K. If K = 2, then the

residence time of n is exponentially distributed with rate:

A(ng, —’I”Ll) + /\(nl, —nz)
= 2X0 + Y(6ny>0 + Ony <0 + Ony >0 + Ony<0)
= 2X0 + Y(0ny20 + Ony20)
(A2 — Ao)
2

If K > 2, then by the inductive hypothesis we have that the
rate of the residence time of n is:

= 2o + (67127&0 + 5“1750) .

K K
D A, =) = (K = DXo+7 Y dn,20
k=1 1=2
- )‘(nKz _n2) + )\(711, _nQ) + A(TLK7 _nl)
K
= (K =1X0+7 Y 6ni%0 — Ao = Yonge>0 = Vnz<o
=2

+ X0 + Y0ny >0 + YOna<o + Ao + VOn >0 + Y, <0

K
:K/\O+725n,i7é0-

=1

Now, condition (K1) is easy to verify. Since n® has the
same components of n, but with different signs, they have
the same number of non-zero components. Hence:

K K
Z )\(’I’ka ) _nk) = Z )‘(nkR*7 _nkR) .
k=1 k=1

In order to prove condition (K2), let u be a cycle from
state n back to the same state n, and u” be the correspond-
ing reverse cycle from n® back to n®. We define Y(u) as
the product of the transition rates that appear in uw. Then,
we prove that ¢ (u) = ¥(u”). From Proposition 1, we know

- A .
that for each \; transition n; = n;+e.—e,- in the cycle u,
. . A .
there is a transition (n; +e.—e.- )% =5 nf in the cycle u%,
i.e., cycles u and u® contain the same number of \; tran-
sitions. Moreover, if we denote by p(n) the sum of positive
components of n, then it holds that A1 transitions preserve
this number, i.e., p(n;) = p(n; +e. —e.- ). Furthermore, for
. A . .

each \o transition n; —% n;+e.—e.— inu, thereis a Az tran-
sition (n; +e. —e,— )R 22, nf in u®, and p(n;i+e.—e,~) =
p(n;)+1. Finally, for each A2 transition n; 22, n;,+e.—e.-
. . o A .

in u, there is a A¢ transition (n; +e. —e,- )R 2% nf in uf,
and p(n; + e. —e.—) = p(n;) — 1. Since u is a cycle, i.e., a
sequence of transitions from state n back to the same state
n, then the total change in p(n) is zero, so there must be an
equal number of Ag and A2 transitions in cycle u. Hence, by

Proposition 1, cycles v and «® contain the same number of
Ao and Az transitions. [

Finally, we can prove Theorem 2.

PROOF OF THEOREM 2. From the fact that X (¢) is
dynamically reversible, we can derive the expression of the
invariant measure associated with state n with respect to a
reference state 0 as given by Lemma 2 in the Appendix. Let
u be an arbitrary path from state O to state n, and let u®
be its reversed path according to Proposition 1. Then:

() _ p(uf)
©(0) ()




Consider an arbitrary state n and let 7' be the minimum
possible number of arrivals that takes the model from state
n to state 0. Notice that T is well-defined. We proceed by
induction on 7. If T =1, then n = 0 — e + e.— for some
1 < ¢ < K, and hence we have:

(1,1 (0,0
(1,1) ( )nR

0 w0
which verifies Equation (6). If T > 1, then by Lemma 1 in
the Appendix we can allow any arrival to get one step closer
to the reference state 0. We choose ¢ such that n. < 0 and
n.— > 0. In this case, we have:

A(n,—,—nc)
U n n+e.—e.-
A—n _+1,n.+1)
u i(n4e —e )P " nf

Hence, by the inductive hypothesis, we have:

1 >\0 p(n)
e ()
Gt (X0, A2) \ X2
)‘(nc* ) _nc)
AN + Lne+ 1) (®)
If AM(n,—,—nc) = Ao, then A(—n.- + 1,n. + 1) = A2, so we
can rewrite Equation (8) as follows:

m(n+ ec

1 X0 )P Xo
Tn+e.—e.,-)= GO0, ) ()\—2> N

B 1 ()\0)1+P(n)
G (Ao, A2) \ A2 .

We know that if A(n.—, —n.) = Ao, then p(n +e. —e,-) =
p(n) + 1, so we have:

) 1 (Ao )P<"+ecec—>
e, )=———[= )
¢ G (X0, A2) \ X2

If A(ne—,—nc) = A1, then A(—n.— + 1,n. + 1) = A1, so we
can rewrite Equation (8) as follows:

e)_l()\o)p(n))\l_
N G2 (o, A2) \ A2 A1
1 )\0 p(n)
G%(AoJ\Z) <)‘72) '

Indeed, if A(n.-,—nc) = A1, then p(n + e. —e.-) = p(n),

so we have:
1 )\0 p(n+ecfec_)
e (B
G (o, A2) \ A2

Finally, if A(n.—, —nc) = A2, then A(—n.- +1,nc.+ 1) = Ao,
so we can rewrite Equation (8) as follows:

ey b (Ao)“%
¢ GE (Ao, A2) \ Az Ao

B 1 ()\O)p(ﬂ)l
a G (o, A2) \ A2 ’

since if A(n.—, —nc) = A2 then p(n+e. —e.-) = p(n) — 1

then we have:

p(ntec—e,_)

ec—) = ”‘; (&) . D
G (Mo, A2) \ A2

m(n+e.—

m(n+ec—

m(n+ ec

m(n+ ec

m(n+e. —

It is intriguing that 7% (n, Ao, X2) = 75 (n, Ao, A2) for all
n € Skg. This means that if the servers can work at two
speeds Ao < A2, or at three speeds Ao < (Ao + A2)/2 < Aqg,
then the stationary probabilities of the join-queue length
differences are identical. This fact has important immediate
consequences that we summarise in the following corollaries.

COROLLARY 4. The canonical trimodal model with the rates
Ao < A2 has the same join-queue length distribution as the
bimodal model with the same rates Ao < Az.

PRrROOF. It is easy to observe that, under immediate join,
there exists a bijection between the state of the systems en-
coded with the join-queue length differences and that en-
coded with the absolute join-queue length. As a conse-
quence, the corollary is proved. []

COROLLARY 5. The canonical trimodal model with rates
Ao < A2 has the same balance index as the bimodal model
with the same rates Ao < Aa:

B (Mo, Xa) = B (Mo, A2) .

Proor. Based on Definitions 2 and 5, the balance indices
are derived directly from the stationary distribution. Thus,
by Theorem 2, the result follows straightforwardly. []

Moreover, it straightforwardly holds that the marginal
probabilities of observing a positive, negative, or any ar-
bitrary components in the canonical trimodal model are the
same as the bimodal model with parameters Ao, A2. How-
ever, it is not straightforward to compare the throughputs
of the canonical trimodal model and the bimodal one. In
fact, Definitions 3 and 6 are quite different. The following
theorem states (quite surprisingly) that the throughputs of
the bimodal and canonical trimodal model with the same
parameters are the same.

THEOREM 4. Consider the bimodal model with rates Ao <
Ao and the canonical trimodal model with the same rates
Ao, A2. It holds that:

Ti (Mo, A2) = T (Mo, A2) .

PRrROOF. Since the system is stable, the total throughput
of the system corresponds to the throughput of a single
server. This can be computed as follows:

T;{()\Q, )\2) = 71'?(72()\07 >\2))\0
+ (TI'I%’<()\O, A2) + 7r;>{’2()\07 )\2))
+ 77 < (Xos A2) Az,

Ao + A2
2

where:

%7 (Mo, X2) = T (1, Ao, A2)

(]

n=(ny,ng2, - ,nKg)ESK:
n1<0,n22>0

ﬂ-IS(’<()\O7)\2) = ﬂ-%(n>)\07)\2)1

(]

n=(ny,ng2, ,nKg)ESK:
n1<0,n2<0

% 0o, ha) = mic(®, 20, 2a),

(]

n=(ny,n2, ,nKg)ESK:
n1>0,n2>0

(Mo A2) = >

n=(ni,ng, - ,nK)ESK:
n1>0,n2<0

TI'Z(II, )‘07 AQ) .



Analogously, the throughput for the bimodal model is:

T[b(()\()7)\2) = (ﬂ'gj()\o,)\z) —+ 7TK (0 )\0,)\2)) Ao
+ F’;{()\o, )\2))\2 .

We next establish that 75 (Xo, X2) = 7= (X0, A2). We
define the following bijection f between a state n, where
n1 < 0 and n2 < 0, and a state where n; > 0 and ns > 0:

f(n) = (—n2,—ni,—n3,...,—nKg).

Since 7 (n, Ao, A2) = 75 (f(n), Ao, A2), because for any state
the sum of positive components equals the sum of negatlve
components, we conclude that 7115(’<()\0, A2) = 71'K ()\07 A2).

Therefore, we can write:

TH (Mo, A2) = 17 (Ao, A2) Ao + T2~ (Ao, Az) (Mo + A2)
—|—7r> <(>\0,)\2))\2
= (7% (Mo, A2) + 75 (0, Ao, A2) — "< (Ao, A2)) Ao
+ 71';><’—(>\0, A2) Ao + WK’—()\O, A2)A2
+ (75 N0y A2) — T2 (Mos A2)) Az -

Since, by Corollary 2, 7rK7()\0,)\2) = 755 (Mo, X2) and, as
proved above, 7TK Moy A2) =7 ()\0, A2), we have:

TH (Mo, A2) = (75 (Ao, A2) + 7R (0, Ao, A2)) Ao
— 71722 (N0, A2) Ao + T2 (Ao, A2)do + 1= (Mo, Az) A
+ (75 (Mo, A2) — 1= (Mo, A2))As -
= (15 (Aoy A2) + 7 (0, Ao, A2)) Ao + o (Mo, Az) Ao
=T (o, A2) .
O

Up to this point, we have shown that the canonical tri-
modal model does not seem to give any benefit with respect
to the bimodal despite its additional features. In practice,
an important benefit of the trimodal model is reduced power
consumption, as given by the following theorem.

THEOREM 5. Let the power consumption of a server de-
pend on its speed A according to the P(\) = A%, with a > 1.
Then, if Ao < A2, the power consumption of the canonical
trimodal model is always less than or equal to that of the
bimodal model, with equality holding only if o = 1.

The proof is given in the appendix. The impact of the power
saving will be analysed in Section 4.

4. EVALUATION RESULTS

In this section, we study the bimodal and trimodal rate
adaptation policies using simulation. This allows us to study
the system without the saturation assumption. We assume
a Poisson arrival process with intensity A. Tasks have iid
exponential service times.

The first simulation experiment is designed to verify the
conjecture that the balance index in the canonical trimodal
model is equal to that of the bimodal model with equiva-
lent rates. We consider a system with K = 5 servers, and
rates Ao = n = 3 and A2 = g = 5. The maximum allowed
throughput under the saturation assumption is 7% (3,5)/5 =
Té7(3,5)/5 = 3.85477. Then, we perform 15 independent

Table 1: Simulation comparison of balance index (98% C.I.)
for canonical trimodal and bimodal without saturation. An-
alytic result for saturation shown in bold.

Bal. Can. Trimodal Bimodal

P avg min max avg min max
0.50 || 0.351 | 0.350 | 0.353 || 0.353 | 0.352 | 0.354
0.70 || 0.571 | 0.568 | 0.575 || 0.575 | 0.571 | 0.580
0.90 || 1.056 | 1.043 | 1.069 || 1.055 | 1.056 | 1.065
0.95 || 1.262 | 1.251 | 1.273 || 1.259 | 1.244 | 1.274
0.98 || 1.418 | 1.402 | 1.433 || 1.429 | 1.411 | 1.447
0.99 || 1.462 | 1.442 | 1.481 || 1.475 | 1.458 | 1.491

1 1.541| n/a n/a 1.541| n/a n/a

simulation runs for different arrival rates, i.e., A = pT¢ (3,5)
with p € {0.5,0.7,0.9,0.95,0.98,0.99}. Finally, we con-
structed confidence intervals with 98% confidence level for
the balance index, as shown in Table 1. The first observation
is that the mean balance index values are very similar for the
bimodal and trimodal models, and the confidence intervals
overlap. In fact, this holds for all the values of p considered.
This suggests that the analytical result that we derived on
the balance index for the bimodal and canonical trimodal
models may hold even when the model is not saturated, or
differ only negligibly. The second observation is that when p
approaches 1, the balance index approaches the theoretical
value derived in Section 3. This provides cross-validation for
the theoretical framework and the simulator. Similar obser-
vations apply for other values of K that we have considered.

The second experiment compares four different systems:
bimodal, canonical trimodal, and two other configurations
of the trimodal algorithm. Ome of the latter, called lazy
trimodal, has A1 = Ao, while the other, called aggressive tri-
modal, has \1 = A2. We consider K = 10, for which the com-
puted maximum throughput of the canonical trimodal model
with rates 3 and 5 is 3.8655. For all the models, the simu-
lated job arrival rate is A = 3.8655p. Figure 3a shows that
the servers reach their maximum utilisation U at different
arrival rates. Specifically, while the bimodal and the canon-
ical trimodal have their maximum utilisation for p = 1 and
show identical behaviour, the lazy and aggressive trimodal
have lower and higher maximum throughput, respectively.
The observation is confirmed by Figures 3b and 3c, which
show the expected join-queue length (JQL) and the expected
response time (R), respectively. Figure 3d shows the power
consumption of the four models. The plot confirms Theo-
rem 5 and shows that the canonical trimodal model has the
same performance in terms of join-queue length, response
time, and utilisation as the bimodal one, but with lower
power consumption. For the lazy and aggressive trimodal
models, there are tradeoffs between power consumption and
other performance indices. For example, the aggressive tri-
modal policy increases the maximum throughput by almost
10% compared to the canonical trimodal, but does so with
13% higher power consumption.

5. CONCLUSION

In this paper, we have considered two rate adaptation
algorithms for fork-join queues. The first, called bimodal,
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Figure 3: Simulation results for bimodal and trimodal models.

changes the speed of a server according to the difference be-
tween its join-queue length and that of another server, while
the second, called trimodal, chooses the speed of a server
according to the differences between its join-queue length
and those of two other servers. We have shown, analyti-
cally and by simulation, that the canonical trimodal model
has the same performance as the bimodal in terms of sub-
task dispersion, utilisation, and expected join-queue length,
but with lower power consumption. We explored by simula-
tion other configurations of the server speeds, and discussed
the tradeoffs between performance indices and power con-
sumption. This may inform the design of a trimodal scheme
that dynamically changes its speed to optimise the tradeoffs
between response time, join-queue length, and power con-
sumption according to the intensity of the incoming traffic.
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APPENDIX
A. RHO-REVERSIBILITY

We recall the concept of p-reversibility that we use to
study the models presented in this paper.

A stationary CTMC X (t) is said to be reversible if it is
stochastically indistinguishable from X (7—t) for all 7,t € R.
The concept of p-reversibility [8] extends the notion of re-
versibility by requiring that the time-reversed process X (7 —
t) is stochastically indistinguishable from X (¢) when we ap-
ply a renaming p to its states. More precisely, if S is the
state space of X (t), the renaming function p is an arbitrary
bijection from the state space to itself. When p is an in-
volution, i.e., p(p(s)) = s for all s € S, then we say that
the system is dynamically reversible [5, 13]. Clearly, when
p is the identity, X (¢) is reversible. Given the renaming p,
proving that X (¢) is p-reversible can be structurally done
by means of the Kolmogorov’s criteria as stated below. For
5,8’ € S, we denote by q(s, s’) the transition rate from s to
s, with s # s’

LEMMA 1 (KOLMOGOROV’S CRITERIA). Let X (t) be a

stationary CTMC with state space S and p be a renaming of
S. Then, X(t) is p-reversible if and only if:

(K]') fOT each s € S! ZSIES q(s, S/) = Z s'es q(p(8)7 S/))
o' s s'#£p(s)
(K2) for any finite sequence of states s1,...,sn with s; € S,

we have

Q(Sl, SQ)Q(S2, 53) ce Q(Sn—l, Sn)q(sn, 81) =
a(p(s1), p(sn))a(p(sn), p(sn-1)) - --a(p(s2), p(s1)) -

Informally, (K1) requires that the residence time in a state
and in its renaming are stochastically identical, while (K2)
requires that, given any cycle of transitions in the CTMC,
the product of its rates equals the product of the rates of the
inverse cycle in the renamed CTMC. Analogously to stan-
dard reversibility, there exists an efficient way for computing
the stationary distribution of p-reversible chains.

LEMMA 2  (STATIONARY DISTRIBUTION). Let X(t) be a
p-reversible CTMC with state space S, 7 its stationary dis-
tribution and let r;s € §. Then, for each sequence of tran-
sitions taking the chain from state r to state s

q(s1,52) q(sn—1,5n)

T =381

q(s2,53) —
S2 n=35,

we have:

[T alp(sian), p(si)

172 a(si, sign)

m(s) = m(r)

B. PROOFS
B.1 Proof of Theorem 1

Let us consider the case n = 0. Without loss of general-
ity, we want to sum the stationary probabilities of all the
states in Sk of the form n = (0, n2,...,nk). Notice that all
the states belonging to this set that have the same sum of
the positive components have the same stationary probabil-
ity. Given that the K — 1 variable components of the states
in this class have exactly j non-negative components that
sum to p, the number of states sharing the same stationary

probabilities are:

(RS

where the first binomial coefficient counts the number of
non-negative integer solutions to the equation x1 +x2+...+
x; = p, and the second one the number of positive solutions
tozi +22+ ...+ x—;j—1 = p. Finally, the third binomial
coefficient counts the number of possible configurations that
have exactly j non-negative components in the K — 1 last
positions of the state vector.

Thus, the marginal distribution of the binomial model can

be computed as follow:
: Jj—1

j=1 p=K—j—1

() (@)

where 1 accounts for the state consisting of all Os.
By considering the Pochhammer’s symbol (y), defined as:

Wn=yly+1)---(y+n-1).

and the Taylor’s expansion of the incomplete Beta-function:
__a - (1 — b)n n
- nz:% nl(a +n) v

then further simplifications bring to:

K-—2
G (n, )73 (0,1, 1) = 1+

B(x,a,b)

K—-2 oo
" w+ K —2
it =1+ 3 3 (“157)
j=1 w=0

fw+K—j—2\(K—1\/n\"T"!
(5225 )
(K -1\ & (w+ K — 2)!

(J 1)'(w+K—J—1)

(K—j—Z'w'
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Let us now consider the case n > 0. Recall that, by Corol-
lary 2, 7 (n,m, p) = 7t (—n,n, 1) . Consider w§ (—n,n, ).
As before we want to sum the stationary probabilities of
all the states of the form n = (—n,n2,...,nk) for n # 0
and n € N. Notice that all the states belonging to this set
that have the same sum of the positive components have the
same stationary probability. Given that the K — 1 variable
components of the states in the class have exactly j non-
negative components that sum to p, the number of states
sharing the same stationary probabilities are:

()G

where the first binomial coefficient counts the number of
non-negative integer solutions to the equation z1 +x2+...+
x; = p, and the second one the number of positive solutions
tozi+z2+...+2Kx—j—1 = p—n. Finally, the third binomial
coefficient counts the number of possible configurations that
have exactly j non-negative components in the K — 1 last
positions of the state vector.

Hereafter we consider the Gauss hypergeometric function
2 F1, defined as

oo

o Fi(a,b, ¢, z) :Z a)”

(©)n n'

For |z| < 1 and generic parameters a, b and ¢, the above
infinite sum is convergent.

Thus, the marginal distribution of the binomial model for
n > 0 (resp., n < 0) can be computed as follow:
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_(ntK-2\(n n+§ = p+j—1
k-2 J\u : , i1
14+n

G (n, W) (n,m, p) =

_(n+EK-=2\(n n+K_ i w+ K+n-—2
T\ K-2 1 : j—1

) _

W

S e [R5 o G 1 R
3 e e ()

1
n+K-—2 n\" =2 K—-1 n K=j=ltn
k-2 J\u) * j *
1 =\ 1
i (K4+n—2)(K+4+n—1),
— G-DI(K4+n—j—-DI(K+n—jw

.(K—J—Q)!(K—j—l)w(n)w

(K —j — 2)lw! m

)

. (n)““*” 3 E = DK == (g)”

x

P 2 Ern-jewl \u
n K-2
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Finally, in order to compute the aggregated probabilities
of observing a negative state in one of the servers we want to
sum the stationary probabilities of all the states of the form
n = (n1,ne,...,nk) where there is at least one negative n;.
Notice that all the states belonging to this set that have the
same sum of the positive components have the same station-
ary probability. Given that the K variable components of
the states in the class have exactly j non-negative compo-
nents that sum to p, the number of states sharing the same
stationary probabilities are:

() (),

where the first binomial coefficient counts the number of
non-negative integer solutions to the equation x; + x2 +

.+ x; = p, and the second one the number of solutions
to z1 +x2 + ... + xx—; = p. Finally, the third binomial
coefficient counts the number of possible configurations that
have exactly j non-negative components in the K — 1 last
positions of the state vector.

Thus, the aggregated probability of observing a positive
(resp., a negative) state in one of the servers can be com-
puted as follow:
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B.2 Proof of Theorem 5

The case a = 1 is trivial and immediately follows from
Theorem 4. Let us assume o > 1. We can write the power
consumption of a single server for the standard trimodal
model as:

P (Mo, A2) = 2 (Ao, A2)AG
+ (7000 + 72> 00, 00))

+ 7% < (Ao, A2)AS
=757 (A0, A2)AT + 75 (Mo, A2)2' T (N0 + A2)”
+ 712 (Ao, A2)AS .

Xo+ A2\ “
2

Thanks to the relations introduced in the proof of Theo-
rem 4, we can write:

PE (Mo, A2) = o (Mo, A2) A + 75 (0, Ao, A2)AG
— 1 (M0, M)A 4 T (Mos A2)2' ¥ (o + A2)
+ 1 (Mo, A2)A5 — 1 F (Ao, A2)AS
Since we have that:
Ph- (Mo, A2) = 7o (Ao, A2)AS + 75 (0, Ao, A2)AG
+ 75 (Ao, A2)AS

to prove that P (Mo, A2) < P¥(Xo,A2), we need to show
that:

217N+ A2)* — AT —A§ < 0.

Define the following function in the variables Ao and Aa:
y=2"""o+ A2)* — A5 — AT,

and observe that for A\g = A2 we have y = 0. We may
consider the set of planes with equations Ao + A2 — d = 0,
for all d > 0. The intersection of this plane with function y
is function g in variable Ao defined as:

=217 —\§ — (d— Xo)*,
whose domain is \g < d. We have:
g =ald=2)""" —axgT!,
and:
g"=ala—1)(=(d=21)""" =277,

i.e., g is concave on its domain and its derivative is zero for
Ao = d/2. Therefore, g < 0 in its domain for all d > 0 and
it is zero only for Ao = d/2, i.e., Ao = A2, as required. [



