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Abstract—Instagram is a popular network application for
photo sharing, video streaming, and online social media in-
teraction. In this paper, we present results from an initial
characterization study of Instagram network traffic, as viewed
from a large campus edge network. Despite the challenges of
NAT, DHCP, end-to-end encryption, and high traffic volume,
we are able to identify key characteristics of Instagram traffic,
which exceeds 1 TB per day. The main highlights from our study
include classic observations such as diurnal usage patterns, Zipf-
like distributions for IP frequency-rank profile, and heavy-tailed
transfer size distributions.

Index Terms—Network traffic measurement; Internet traffic
characterization; online social networks; Instagram; TCP/IP

I. INTRODUCTION

Internet traffic is always changing, as new network ap-
plications come to the forefront and grow in popularity. In
some cases, these applications displace prior network services,
which decrease in popularity since they are no longer in vogue.
In other cases, the new applications just compete for our
attention, and add to the time that people spend online.

On today’s Internet, a lot of the traffic is for video stream-
ing. Prominent examples include services like YouTube and
Netflix, for our personal entertainment. However, these are
not the only popular network applications. People also want to
communicate with each other, whether it is through traditional
email, or via the latest and greatest social media applications.

In the last few years, Instagram has grown rapidly in usage
and popularity. It is a popular Internet service for photo
sharing, video streaming, and online social media interaction.
Instagram has arguably become the newest and hottest social
media application, especially among high-school and college-
age students, as well as the general public.

In this paper, we investigate the use of Instagram by our
campus community at the University of Calgary. We believe
that campus networks offer a rich and fertile environment
for studying current trends in network application usage,
because of the high-speed network connectivity, the flexible
usage policies, and the large cohort of young and technically-
savvy users, who are often referred to as “digital natives”
because of how they spent their growing up years online [31].
Furthermore, such studies can help identify the performance
implications of these network applications on future enterprise
networks, whether in academia or industry.

As motivational context for our work, it is important to
consider previous studies of Internet traffic. Prior researchers
have looked at the emergence of YouTube video streaming for

user-generated content [8], [11], [15], the usage of wireless
LANs [10], [22], and Netflix video streaming traffic [1], [2],
[19]. More recent papers from our own group at the University
of Calgary have looked at Learning Management System
(LMS) traffic, and Outlook (Office 365) email traffic [34].
All of these studies have offered insights into the usage and
performance of current network applications, and ways to
improve them in the future.

One of the primary technical challenges in traffic character-
ization studies of this type is the growing use of end-to-end
encryption on the Internet. While encryption is essential for the
privacy and security of online users, it also obfuscates several
aspects of the traffic, such as file names, types, and content
popularity. A secondary challenge is the growing complexity
of campus enterprise networks, which often use middle-boxes
(e.g., wireless APs, DHCP, NAT, VPN) to support flexible
BYOD (Bring Your Own Device) networks. These technolo-
gies also enhance privacy by obscuring aspects of the traffic
(e.g., number of users, user location, mapping between IP
addresses and end-user devices), making session identification
and user modeling difficult. Nonetheless, key characteristics
can still be discerned from the traffic, such as diurnal usage
patterns, content sizes, and bandwidth consumption.

The two main research questions in our work are:
• What are the key characteristics of Instagram traffic?
• What are its network performance implications?

Many of the techniques used in this paper are inspired by
prior works on network traffic measurement, power-laws, and
heavy-tailed distributions, such as [2], [9], [21], [24]. We
seek to establish the existence of these properties (or not) in
campus-level Instagram traffic.

The rest of this paper is organized as follows. Section II
provides some background on Instagram, and discusses prior
research on Internet traffic measurement. Section III describes
our research methodology, measurement infrastructure, and
software tools for data collection and analysis. Section IV
presents the traffic characterization results. Finally, Section V
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Instagram

Instagram is a photo and video sharing service owned by
Facebook [32]. The platform was originally developed by
Kevin Systrom and Mike Krieger, and its initial release was



on October 6, 2010. The platform quickly grew in popularity,
with 25,000 signups on the very first day [17].

Using Instagram, people can share their photos and videos
with the world, categorizing them using hashtags, and describ-
ing the photos using a short text. A user can browse through
postings from other users, either by user or by hashtag, and
“like” the posts of other users to show their support for it [32].

Currently, Instagram has over one billion users who are
active at least monthly. Each day has more than 500 million
users active, posting more than 400 million stories [17].

Instagram keeps expanding its functionality beyond the
posting/liking of photos and videos. Some of the newer
features are [32]:

• Instagram Direct: users can send messages directly to
other users.

• Instagram Stories: a Snapchat-like feature, where users
can share photos/videos publicly for 24 hours.

• Instagram TV (IGTV): supports uploads of longer videos
filmed in different formats (e.g., smartphone).

• Live Streaming: users can send/receive live video stream-
ing sessions with multiple other users.

B. Related Work

Internet traffic measurement is a well-known technique to
facilitate the study of network-based applications [12]. The
two main methodological approaches are passive and active
network measurement. Passive approaches observe a network
system without perturbing it, while active approaches use test
sessions or probe packets to see how a server or a network
handles certain requests. These two basic techniques can be
used to collect and analyze data about network systems. A
tutorial on network traffic measurement is available in [33].

A primary goal of network measurements is traffic char-
acterization. Web browsing [4], [9], peer-to-peer applica-
tions [20], [6], and video streaming services [8], [11], [15]
are examples of network applications that have been studied
in the past. Other works have focused on smartphone traf-
fic [14], Learning Management Systems [28], and online social
networks [7], [18], [16], [23], [25], [26], [29].

Network traffic measurement studies are especially valuable
when they identify performance problems with particular
protocols, applications, or services, or can predict potential
performance implications in the future. For example, Adhikari
et al. studied Netflix [1], [2] and the evolution of its CDN in-
frastructure to support large-scale video streaming services. In
our present paper, our measurements help provide insight into
the potential performance implications of Instagram traffic on
our campus network, as well as on Instagram’s infrastructure
itself. For example, our measurements show that Instagram
now accounts for over half of the total Facebook traffic seen
on our campus network.

III. METHODOLOGY

Our traffic characterization study is conducted using a
combination of passive and active network measurement. All

the measurements are captured at the University of Calgary in
Calgary, Alberta, Canada.

The primary datasets used in our paper are collected using
passive traffic measurement. At the edge router connecting
the University of Calgary to the Internet, we have installed
specialized hardware for Internet traffic measurement. Our
Endace DAG packet capture card sees all inbound and out-
bound network packets in a mirrored stream from the campus
edge router. For privacy reasons, we only process packet
headers, and not packet payloads (which are often encrypted
anyway). To conserve on storage space requirements for long-
term data collection, the packet streams are processed using
Zeek (formerly called Bro [27]) to produce TCP connection-
level summaries.

Each connection is summarized into a one-line entry in a
log, as shown in the example in Figure 1. We use the default
Zeek connection log format. The most relevant fields for our
needs are the timestamp, the source IP address and port, the
destination IP address and port, the TCP connection duration,
the TCP connection state, and the counts of packets and bytes
sent and received on each TCP connection.

We pre-process the logs to extract only the Instagram
traffic of interest. Looking at the IP addresses used by
Instagram and Facebook, there are many different addresses,
and they change frequently, since these are cloud-hosted
services in AWS, with lots of DNS round-robin for load-
balancing across servers. However, through some active
measurements of Instagram test sessions locally (using
an Android smartphone, the Instagram mobile app, the
Charles proxy software, and experiments with login/logout,
messaging, photo sharing, live streaming, and IGTV), we
identified one particular IP address (157.240.3.63) that was
used consistently in over 90% of the Instagram requests
seen. The DNS host names associated with this IP are
i.instagram.com, platform.instagram.com,
instagram.c10r.facebook.com,
scontent-sea1-1.cdninstagram.com, and
graph.instagram.com, all of which resolve to the
same IP address. The data we study in this paper is only for
connections to this address.

In this paper, we focus on a single week of data from
Sunday March 3, 2019 to Saturday March 9, 2019. This
week is from the middle of the academic semester, when
many students, staff, and faculty are around campus, and thus
provides a representative sample of Instagram activities. The
data contains just over 13 million TCP connections between
the University of Calgary and Instagram.

IV. EMPIRICAL MEASUREMENT RESULTS

This section presents the Instagram traffic measure-
ments from our campus edge network. Specifically, we
focus on traffic destined to IP address 157.240.3.63,
which is known as i.instagram.com. While there
are several other IP addresses involved in an Instagram
session (e.g., b.i.instagram.com 157.240.3.174 and
graph.facebook.com 157.240.3.20), this IP appears to



Timestamp UID Src_IP SPort Dest_IP DPort Prot Svc Duration TCPout TCPin State IPout B_out IPin B_in
15628.248886 CDu29N3WgQZb 1.2.3.4 50468 157.240.3.63 443 tcp ssl 165.901378 9053 86515 S3 100 14297 98 90892
15628.250997 CThhn41tYm27 1.2.3.4 50470 157.240.3.63 443 tcp ssl 3.334059 489 447 RSTO 11 1093 7 1133
15628.301082 Cz1RCa39Ralf 1.2.3.5 50040 157.240.3.63 443 tcp ssl 329.763400 425964 45413 SF 737 468313 538 73893
15628.307782 CwGcdG3hgX7e 1.2.3.6 62558 157.240.3.63 443 tcp ssl 0.004667 39 39 SF 4 247 5 263
15628.316061 CLkeo71eiHx1 1.2.3.7 57396 157.240.3.63 443 tcp ssl 209.412519 5239 91968 SF 67 9983 83 94918
15628.348089 COhKpI2ASJOg 1.2.3.7 57397 157.240.3.63 443 tcp ssl 209.388824 7489 914542 S3 454 31736 682 933553
15628.502214 CVh9Ev3pUSga 1.2.4.1 52990 157.240.3.63 443 tcp ssl 8.459407 1703 126326 SF 83 6031 99 131482
15628.504240 CpDJJC4XfYE8 1.2.4.1 52991 157.240.3.63 443 tcp ssl 8.457381 2222 962556 SF 431 24646 719 998714

Fig. 1. Example of Selected Fields from the Zeek Connection Log Format for Empirical Analysis of Instagram Traffic (anonymized source IPs)

Fig. 2. Daily Patterns for Instagram Traffic (March 3-9, 2019)

be the main entry point into Instagram, and accounts for over
90% of the HTTP(S) requests during our test sessions. We
thus focus on this single IP, with the caveat that our results
may slightly underestimate the total Instagram traffic.

A. Overview

Table I provides a statistical summary of our week-long
dataset. The table shows the daily totals for connections, pack-
ets, and bytes for Instagram traffic, as well as some structural
properties of the data, such as the number of distinct local IP
addresses and /24 subnets observed. The primary observations
from Table I are the high data volumes generated by Instagram
traffic (e.g., about 1 TB per day), the asymmetry of this traffic
(e.g., received bytes exceed sent bytes by about a factor of
20), and the large client base (e.g., several thousand distinct
IP addresses observed, many of which are NAT addresses
with multiple users behind them). What is also remarkable
is the consistency in the traffic from one day to the next. A
typical weekday involves about 2 million TCP connections to
Instagram from 1,600 different IP addresses across about fifty
/24 subnets, exchanging well over 1 TB of data. Each TCP
connection lasts about 72 seconds on average, though this is
slightly higher on weekends.

Figure 2 provides an graphical view of the daily Insta-
gram traffic. The Instagram traffic shows a strong diurnal
pattern, as is common for many Web-based applications and
services. Traffic activity rises quickly each morning, peaks
near mid-day, and then declines gradually in the mid-to-late
afternoon and evenings. The Instagram connection counts are
quite consistent on each weekday, but drop by about 60%
on the weekends. This pattern reflects the diurnal activities
of the faculty, staff, and students on campus. The network

traffic is higher when more people are present on campus,
although Instagram traffic continues late into the evening,
perhaps reflecting students in labs, libraries, coffee shops, or
dormitories.

Another observation from Figure 2 is the consistency of
the weekday traffic from Monday to Thursday, despite the
varying class lecture schedule (e.g., MWF versus TTh). There
is a slight decline on the Friday afternoon (yellow), and lower
activity levels on weekends (since no lectures take place, and
fewer people are on campus). There are also some subtle
differences between Saturday (dark blue, with slightly lower
traffic, especially in the evening) and Sunday (light blue,
with slightly higher traffic in the evening). These patterns are
consistent with the intuition of Friday and Saturday evenings
for social outings, with Sundays and “school nights” for
catching up on academic and/or online pursuits.

B. TCP Connection State

Our next analysis focuses on TCP connection state. As
indicated in the sample log data in Figure 1, some connections
have TCP’s normal opening handshake (SYN) and closing
handshake (FIN), resulting in state SF, while some do not. For
example, some SYN connection requests are never answered
(S0), and some TCP connections are aborted with a reset,
either by the originator (client) or the responder (server).
Furthermore, some connections might last so long that they
commence in one (3 hour) log and finish in a different log.
These partially observed connections can have several different
states in the connection log, such as S1, S2, S3, or OTH.

Table II provides a statistical summary of the TCP con-
nection states observed in our dataset. Approximately half
(47.9%) have the normal SF state, while the other half do
not. Among the latter, the most prevalent is a reset of a
successful connection by the originating client (RSTO). There
could be many reasons for this, including a user aborting
slow content, changing pages prematurely, or deactivating their
mobile device. It could also reflect how some Web browsers
handle idle TCP connections [5]. Next most prevalent are
partial connections (S1, S2, or S3), many of which are long-
lasting and exchange a lot of data. Two other reset types are
also seen, either for unsuccessful connections (RSTS0), or
for successful connections reset by the server (RSTR). The
next state of interest is S0, for unsuccessful TCP connection
attempts. Finally, there are a half-dozen other unusual states
(e.g., half-open connections, REJECT, etc) that account for a
very small proportion of the total connections and bytes.



TABLE I
OVERVIEW OF EMPIRICAL DATASET FOR INSTAGRAM TRAFFIC ANALYSIS (UNIVERSITY OF CALGARY, MARCH 3-9, 2019)

Item Description Sun Mar 3 Mon Mar 4 Tue Mar 5 Wed Mar 6 Thu Mar 7 Fri Mar 8 Sat Mar 9 Overall
TCP Connections 896,849 2,355,640 2,313,701 2,352,614 2,253,556 2,055,827 853,820 13.1 M

Mean Duration 78.7 s 72.1 s 71.9 s 72.0 s 72.3 s 73.4 s 76.7 s 72.3 s
Packets Sent 264.3 M 565.3 M 565.2 M 561.9 M 550.3 M 509.0 M 283.3 M 3.3 B

Packets Received 550.9 M 1,003 M 953.9 M 931.1 M 950.7 M 910.2 M 589.9 M 5.9 B
Bytes Sent 32.2 GB 63.4 GB 60.4 GB 60.2 GB 60.0 GB 57.3 GB 33.3 GB 367 GB

Bytes Received 695 GB 1,259 GB 1,196 GB 1,167 GB 1,193 GB 1,141 GB 744.5 GB 7.2 TB
Client IP Addresses 1,450 1,679 1,605 1,532 1,621 1,547 1,449 3,498

IP Subnets 31 60 53 49 59 52 49 81

TABLE II
SUMMARY OF TCP CONNECTION STATES OBSERVED

State Description Conns %Conns Bytes %Bytes
SF: SYN-FIN 6,265,336 47.88% 3.78 TB 52.55%
RSTO: origin reset 2,487,505 19.01% 1.74 TB 22.91%
S3: no FIN seen 1,554,591 11.88% 879.9 GB 11.21%
S2: client FIN only 595,772 4.55% 340.1 GB 4.38%
S1: server FIN only 498,635 3.81% 189.7 GB 2.33%
RSTOS0: fail/RSTO 354,775 2.71% 222.9 GB 2.87%
RSTR: rcvr reset 335,304 2.56% 49.2 GB 0.63%
SH: no SYN-ACK 294,300 2.25% 107.1 GB 1.37%
SHR: no SYN seen 273,951 2.09% 57.3 GB 0.74%
OTH: other state 201,788 1.54% 71.3 GB 0.92%
S0: failed setup 166,822 1.27% 0.03 GB < 0.01%
REJ: rejected 37,455 0.29% 4.5 GB 0.06%
RSTRH: rcvr reset 20,329 0.16% 2.0 GB 0.03%
Total 13,086,563 100.0% 7.5 TB 100.0%

Figure 3 provides a more detailed look at the TCP connec-
tion state. This is a time series plot, with a one-minute time
granularity for the week, and a small tick mark at midnight
as a demarcation between each day. The graph shows the
relative proportion of each (color-coded) TCP connection state
in each one-minute interval. The purple colors represent SF
(dark purple), S1, S2, and S3 (light purple), while S0 is yellow.

Two observations are evident from Figure 3. First, there is a
strong diurnal pattern in the TCP connection states. At night
time, the SF state dominates, while when the traffic load is
higher during the day, many other TCP states are observed.
Second, the downward “fingers” along the top of the graph
represent the busiest parts of each day. When the traffic load
is near its peak, there are more instances of unsuccessful
connections (RSTOS0 in dark green) and server-side resets
(RSTR in orange). There are also more half-open connections
(SH in light blue, and SHR in dark blue), but these could
be attributable either to the server, our monitor, or Internet
congestion (i.e., packet losses) in transit.

C. TCP Connection Duration

The next analysis focuses on how long each TCP connection
lasts. The TCP connection duration is reported in the logs, and
represents the elapsed time between the first packet (usually
a SYN) and the last packet (usually a FIN or a FIN/ACK)
observed for a given TCP connection.

Figure 4 shows the results from our analysis of TCP connec-
tion duration. Specifically, Figure 4(a) shows the cumulative
distribution function (CDF) on a linear scale, while Figure 4(b)

shows the pdf on a log scale, and Figure 4(c) shows the log-log
complementary distribution (LLCD).

There are several idiosyncracies in the connection duration
distribution. First, about 12% of the connections have a
duration of zero, since they consist of only a single packet.
Second, there is a small peak near 4 seconds, since many of
the failed (S0) connections give up after several unsuccessful
retransmission attempts. Third, there is a large peak at 65
seconds; we attribute this to a default persistent connection
timeout value for an idle TCP connection. Finally, there is
another peak at 185 seconds. Again, this is due to a persistent
connection timeout value used by the Instagram site. Through
active measurements, we have determined that the 65-second
timeout is used to terminate persistent connections when the
Instagram app is closed, and the 185-second timeout is used
when the app is still running in the background. Facebook’s
proxygen HTTP server also uses a 185-second timeout.

The CDF plot in Figure 4(a) shows a more detailed
breakdown of the connection duration distribution based on
TCP connection state. The S0 connections are the shortest,
typically lasting 2-5 seconds, and appear in the upper left part
of the plot. Successful (SF) connections have a wide range
of durations, with the median near 65 seconds, the average
near 83 seconds, and the longest observed connection (9,923
seconds) lasting almost 3 hours. The distributions for S1/S2/S3
connections are similar in shape to SF, though S1 connections
tend to be much shorter, S2 connections only slightly shorter,
and S3 connections tend to be much longer than SF. The
“kinks” in these CDF plots for SF and S1/S2/S3 connec-
tions align with the persistent connection timeouts mentioned
earlier, namely at 65 seconds and 185 seconds. Furthermore,
many of the RSTR connections occur at exactly 65 seconds,
suggesting that the reset is a mechanism for the server to
reclaim needed resources. Finally, the RSTO connections tend
to be shorter; this line falls between those for S0 and S1.

Since the TCP connection durations vary so widely, we
apply a log-transform (base 2) to the duration data, and re-
plot the distribution in Figure 4(b). Note that the vertical scale
now is also logarithmic. This graph shows a wide-ranging
distribution, from the single-packet connections with near-zero
duration, to the connection that lasted almost 3 hours. The
tallest peak in this distribution represents durations of 64 to
127 seconds.

The LLCD plot in Figure 4(c) provides a closer look at
the tail of the distribution, on a log-log scale. In this graph,



Fig. 3. Time Series Illustration of TCP Connection State in One-Minute Intervals for Instagram Traffic (March 3-9, 2019)

(a) CDF (linear scale) (b) pdf (log2 transform) (c) LLCD
Fig. 4. Distribution of TCP Connection Duration for Instagram Traffic

the straight line (slope -3.15, R2 = 0.9748) indicates a power-
law structure, implying a heavy-tailed distribution for the TCP
connection duration. The tail of the distribution starts near 100
seconds, and spans almost all the way to 10,000 seconds.

D. Data Transfer Sizes

We next look at the data volumes exchanged on TCP
connections, either inbound or outbound. We do so based on
both packet counts and byte counts, as a sanity check on
our data. The smallest packet sizes observed are 40 bytes,
and the average packet size on the large transfers is around
1,440 bytes. Both these values make sense for typical TCP/IP
implementations on the Internet.

Figure 5 shows LLCD plots for the number of packets
sent and received on each TCP connection. Since this number
varies widely, we apply a log-transform to this data, using
base 2. In general, the received packet counts are slightly
higher, though the two values are comparable since TCP uses
ACK packets to ensure reliable data transfer. With TCP’s
delayed ACK strategy, the number of ACKs is typically half
the number of data packets. The tail of the distribution has
several connections with well over 100,000 packets, possibly
for photos or streaming videos. The graph suggests that
both distributions are heavy-tailed, based on the straight-line
behavior in the tail of the distribution on the log-log plot
(similar slopes for both: -1.85, R2 = 0.9887).

Figure 6 shows the results for the number of bytes sent and
received on each TCP connection. This number varies widely,
from zero bytes to 600 MB, so we again apply a log-transform
(base 2) to this data. Figure 6(a) shows the pdf of the resulting
distribution for bytes sent, while Figure 6(b) shows the pdf

Fig. 5. Distribution of Transfer Sizes in Packets

for bytes received. The tallest bars are for connections with
less than 1 KB of data, although the distribution continues
well to the right. Two connections sent over 100 MB of
data (possibly for live streaming or for video uploads), and
two connections received over 600 MB of data. In general,
the received byte counts are about an order of magnitude
larger than the bytes sent, though this does not hold true for
individual TCP connections that are uploading lots of data.

Figure 6(c) shows the CDFs of the two distributions, while
Figure 6(d) compares their LLCD plots. Both distributions
are heavy-tailed, with the bytes received (slope -1.53, R2 =
0.9633) having a longer tail (slope -1.1, R2 = 0.9856).

E. TCP Throughput

From the TCP connection durations and transfer sizes, it
is possible to analyze the TCP throughput achieved, both for
inbound and outbound data transfers. For smaller transfers,



(a) Bytes Sent pdf (b) Bytes Received pdf (c) CDF (d) LLCD
Fig. 6. Distribution of Transfer Sizes in Bytes

Fig. 7. LLCD Plot for TCP Connection Throughput

persistent connection timeouts bloat the duration, resulting in
low average throughput. For larger transfers, however, this
metric provides a good assessment of TCP performance, and
the demands being placed upon the campus network and the
Instagram servers.

Figure 7 shows the results from this analysis. Specifically,
we only consider SF connections that last at least 1.0 sec-
onds, of which there are 5.9 million. We again use our log
transform (base 2) on the throughputs, which vary widely. In
general, the received throughputs are much higher than the
sending throughputs. The highest value observed for sending
throughput was just over 10 Mbps, for a 1.6 MB transfer
that completed successfully in 1.32 seconds (Tuesday 9:28am).
For receiving throughput, the highest value observed was 65
Mbps, for a 12 MB transfer that completed successfully in
1.54 seconds (Monday 2:45am).

Figure 7 shows the LLCD plots for throughput. Both
distributions have a pronounced tail. The receive throughputs
are about an order of magnitude higher than the sending
throughput for the largest transfers observed. Through active
measurements, we have determined that the server supports the
TCP window scaling option, which enables higher throughputs
(but only if the client supports it as well).

F. Summary

Our characterization study of Instagram traffic has provided
several interesting insights. First, the sheer volume of this
traffic is staggering. On our campus network, the Instagram
traffic averages over 1 TB of data downloaded per day on
a normal weekday. This level of usage is third behind video
streaming services such as Netflix (6 TB per day) and YouTube

(4 TB per day), which together account for over half of the
daily inbound traffic on our campus network [19]. Second,
there is surprising consistency in the traffic from day to
day, suggesting that Instagram users are creatures of habit.
Third, the Instagram traffic exhibits power-law properties and
heavy-tailed distributions like other information systems. For
example, the TCP connection durations and the byte transfer
size distribution are heavy-tailed. While these characteristics
are similar for many Web and media streaming services, some
features of Instagram traffic also appear to be unique (e.g.,
TCP states, connection durations).

V. CONCLUSION

This paper has presented a network traffic characterization
study of Instagram, based on one week of data collected
from a campus edge network. We studied the traffic profile,
TCP connection states, transfer sizes, and throughput. We
identified several trends in the time series data, such as
diurnal patterns, consistency from day to day, and a notica-
ble decline on weekends. In many of our results, we have
found skewed distributions with high variability (e.g., transfer
sizes, throughputs), and heavy-tails (e.g., connection durations,
transfer sizes). These characteristics can have a large impact
on a campus edge network.

There are several interesting future directions to consider.
These include session-level characterization (without compro-
mising any user identities), and the dynamics of user mobility.
Finding an effective way to monitor network applications that
use many dynamic IPs in a cloud-based infrastructure is also
a measurement challenge.

More generally, Instagram is still a rather new social media
service, and is still developing as an app and influencing
user behavior online. Studies of the traffic/usage of Instagram
as reported in this paper can provide a baseline for future
studies of the social aspects of this technology. It will be
interesting to see how the behavioral tendencies evolve over
time, particularly as even more new features are added.

ACKNOWLEDGEMENTS

Financial support for this work was provided by Canada’a
Natural Sciences and Engineering Research Council (NSERC).
The authors thank University of Calgary Information Tech-
nologies (UCIT) for enabling the collection of our network
traffic measurement data.



REFERENCES

[1] V. Adhikari, Y. Guo, F. Hao, V. Hilt, Z-L. Zhang, M. Varvello, and
M. Steiner, “Unreeling Netflix: Understanding and Improving Multi-
CDN Movie Delivery”, Proceedings of IEEE INFOCOM, Orlando, FL,
pp. 1620-1628, March 2012.

[2] V. Adhikari, Y. Guo, F. Hao, V. Hilt, Z-L. Zhang, M. Varvello, and
M. Steiner, “Measurement Study of Netflix, Hulu, and a Tale of
Three CDNs”, IEEE/ACM Transactions on Networking, Vol. 23, No. 6,
pp. 1984-1997, December 2015.

[3] J. Alstott, E. Bullmore, and D. Plenz, owerlaw: A Python Package for
Analysis of Heavy-Tailed Distributions”, 2014. https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0085777

[4] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Charac-
terization and Performance Implications” , IEEE/ACM Transactions on
Networking, Vol. 5, No. 5, pp. 631–645, 1997.

[5] M. Arlitt and C. Williamson, “An Analysis of TCP Reset Behaviour on
the Internet”, ACM Computer Communication Review, Vol. 35, No. 1,
pp. 37-44, January 2005.

[6] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt, “A
Comparative Analysis of Web and Peer-fo-Peer Traffic”, Proceedings of
WWW, pp. 287-296, Beijing, China, April 2008.

[7] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characterizing
User Behavior in Online Social Networks”, Proceedings of ACM IMC,
pp. 49-62, Chicago, IL, November 2009.

[8] Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti,
“Characterizing and Modeling Popularity of User-generated Videos”,
Proceedings of IFIP Performance, Amsterdam, Netherlands, October
2011.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching
and Zipf-like Distributions: Evidence and Implications”, Proceedings of
IEEE INFOCOM, New York, NY, pp. 126–134, March 1999.

[10] P. Cao, G. Li, A. Champion, D. Xuan, S. Romig, and W. Zhao, “On
Human Mobility Predictability Via WLAN Logs”, Proceedings of IEEE
INFOCOM, Atlanta, GA, May 2017.

[11] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon, “I Tube, You
Tube, Everybody Tubes: Analyzing the World’s Largest User-Generated
Content Video System”, Proceedings of ACM IMC, pp. 1-14, San Diego,
CA, November 2007.

[12] M. Crovella and B. Krishnamurthy, Internet Measurement: Infrastruc-
ture, Traffic and Applications, John Wiley & Sons, 2006.

[13] Critical Stack LLC, “Bro Logs”, 2014. http://gauss.ececs.uc.edu/
Courses/c6055/pdf/bro log vars.pdf

[14] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A First Look at Traffic on Smartphones”, Proceedings of ACM IMC,
pp. 281-287, Melbourne, Australia, November 2010.

[15] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube Traffic: A View
from the Edge”, Proceedings of ACM IMC, pp. 15-28, San Diego, CA,
November 2007.

[16] Y. Hu, L. Manikonda, and S. Kambhampati, “What We Instagram: A
First Analysis of Instagram Photo Content and User Types”, Proceedings
of 8th International AAAI Conference on Weblogs and Social Media,
pp. 595-598, Ann Arbor, MI, June 2014.

[17] Instagram, “A quick walk through our history as a company”, March
2019. https://instagram-press.com/our-story/

[18] B. Krishnamurthy, P. Gill, and M. Arlitt, “A Few Chirps About Twitter”,
Proceedings of Workshop on Online Social Networks, pp. 19-24, Seattle,
WA, August 2008.

[19] M. Laterman, M. Arlitt, and C. Williamson, “A Campus-Level View
of Netflix and Twitch: Characterization and Performance Implications”,
Proceedings of SCS SPECTS, pp. 15-28, Seattle, WA, July 2017.

[20] A. Madhukar and C. Williamson, “A Longitudinal Study of Peer-to-Peer
Traffic Classification”, Proceedings of IEEE/ACM MASCOTS, Monterey,
CA, USA, pp. 179-188, September 2006.

[21] A. Mahanti, N. Carlsson, A. Mahanti, M. Arlitt, and C. Williamson, “A
Tale of the Tails: Power-Laws in Internet Measurements”, IEEE Network,
Vol. 27, No. 1, pp. 59-64, January 2013.

[22] A. Mahanti, C. Williamson, and M. Arlitt, “Remote Analysis of a Dis-
tributed WLAN Using Passive Wireless-Side Measurement” Performance
Evaluation, Vol. 64, No. 9-12, pp. 909-932, October 2007.

[23] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee,
“Measurement and Analysis of Online Social Networks”, Proceedings of
ACM IMC, pp. 29-42, San Diego, CA, October 2007.

[24] M. Mitzenmacher, “A Brief History of Generative Models for Power
Law and Lognormal Distributions”, Internet Mathematics, Vol. 1, No. 2,
pp. 226-251, 2003.

[25] A. Nazir, S. Raza, and C. Chuah, “Unveiling Facebook: A Measurement
Study of Social Network Based Applications”, Proceedings of ACM IMC,
pp. 43-56, Vouliagmeni, Greece, October 2008.

[26] A. Nazir, S. Raza, D. Gupta, C. Chuah, and B. Krishnamurthy, “Un-
derstanding Online Social Network Usage from a Network Perspective”,
Proceedings of ACM IMC, pp. 63-75, Chicago, IL, November 2009.

[27] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-
time”, Computer Networks, Vol. 31, No. 23, pp. 2435-2463, Dec 1999.

[28] S. Roy and C. Williamson, “Why is my LMS so slow? A Case Study
of D2L Performance Issues”, Proceedings of ISCA Computers and Their
Applications (CATA), Las Vegas, NV, pp. 34-39, March 2018.

[29] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding Online Social Network Usage from a Network Perspective”,
Proceedings of ACM IMC, pp. 35-48, Chicago, IL, November 2009.

[30] Variety, “Facebook, Instagram Apps Suffer Hours-Long World-
wide Outages for Some Users”, https://variety.com/2019/digital/news/
facebook-instagram-apps-outage-worldwide-1203162777/

[31] Wikipedia, “Digital Native”, March 2019. https://en.wikipedia.org/wiki/
Digital native

[32] Wikipedia, “Instagram”, March 2019. https://en.wikipedia.org/wiki/
Instagram

[33] C. Williamson, “Internet Traffic Measurement”, IEEE Internet Comput-
ing, Vol. 5, No. 6, pp. 70–74, November/December 2001.

[34] Z. Zhang and C. Williamson, “A Campus-level View of Outlook Email
Traffic”, Proceedings of ICNCC, Taipei, Taiwan, pp. 299–306, Dec 2018.


