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Abstract. In coupled speed scaling systems, the speed of the CPU is ad-
justed dynamically based on the number of jobs present in the system.
In this paper, we use Markov chain analysis to study the autoscaling
properties of an M/GI/1/PS system. In particular, we study the satu-
ration behaviour of the system under heavy load. Our analytical results
show that the mean and variance of system occupancy are not only finite,
but tightly bounded by polynomial functions of the system load and the
speed scaling exponent. We build upon these results to study the speed,
utilization, and mean busy period of the M/GI/1/PS. Discrete-event
simulation results confirm the accuracy of our analytical models.

1 Introduction

Coupled speed scaling systems adjust the CPU speed dynamically based on the
number of jobs in the system. These dynamic speed scaling systems provide
tradeoffs between response time and energy consumption [1, 2]. Specifically, run-
ning the CPU faster improves the response time, but consumes more energy.

Within a speed scaling system, the two most important considerations are
the scheduler and the speed scaling function. The scheduler determines which job
is executed next, and the speed scaling function determines the speed at which
that job is executed. A popular approach for the latter is job-count-based speed
scaling, in which the service rate is a function of the current system occupancy [3,
8, 21]. We refer to this as coupled speed scaling, since the service rate is coupled
to the system occupancy.

In this paper, we focus on the autoscaling properties of coupled speed scaling
systems under heavy load. In particular, we consider sustained offered loads that
drive the system toward saturation, in which the system utilization becomes
arbitrarily close to unity (i.e., U → 1). Note that if there is no limit to the
maximum service rate, then the system will automatically adjust (i.e., autoscale)
its service rate to accommodate whatever load is presented to it.

Our current paper is motivated by some of our own prior work on the au-
toscaling properties of coupled speed scaling systems [9]. In particular, our prior
work used discrete-event simulation to show that the mean system occupancy
remained finite in coupled speed scaling systems under heavy load (see Figure 1).
Furthermore, the mean occupancy was estimated as E[N ] ≈ ρα [9].

In our current paper, we present analytical results that bound the mean
and variance of occupancy under heavy load. Specifically, we use Markov chain
analysis to study the dynamics of a PS-based speed scaling system, and derive
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Fig. 1. Distribution of System Occupancy (based on Figure 2b in [9])

tight bounds on system performance. We then extend our model to analyze the
mean busy period for PS under coupled speed scaling. Finally, we use discrete-
event simulation to verify the accuracy of our analytic model, and to extend our
observations to SRPT-based systems.

The main insights from our work are the following. First, we show that the
mean and variance of the system speed are bounded, even under heavy (but
finite) offered load. Second, we show that the mean and variance of system
occupancy are tightly bounded, and are polynomial functions of ρ and α. Third,
we show that the mean busy period in a PS-based coupled speed scaling system
grows at least exponentially with offered load. Finally, we show that the mean
busy period for an SRPT-based system grows much faster than that for the
corresponding PS-based system.

The rest of this paper is organized as follows. Section 2 reviews prior liter-
ature on speed scaling systems. Section 3 presents our system model. Section 4
presents our analytical and numerical results. Section 5 presents simulation re-
sults. Finally, Section 6 concludes the paper.

2 Background and Related Work

Prior research on speed scaling systems appears in two different research commu-
nities: theory and systems. Theoretical work typically focuses on the optimality
of speed scaling systems under some simplifying assumptions (e.g., unbounded
service rates, known job sizes). Systems work typically focuses on “good” so-
lutions, rather than optimal ones [7, 8], and especially those that are robust to
unknown job sizes, scheduling overheads, as well as finite and discrete system
speeds. In this literature review, we focus primarily on the theoretical work as
relevant background context for our paper.



In speed scaling systems, there are many tradeoffs between service rate, re-
sponse time, and energy consumption. Yao et al. [23] analyzed dynamic speed
scaling systems in which jobs have explicit deadlines, and the service rate is
unbounded. Bansal et al. [5] considered an alternative approach that minimizes
system response time, within a fixed energy budget. Others have focused on find-
ing the optimal fixed rate at which to serve jobs in a system with dynamically-
settable speeds [10, 21, 22].

Several studies indicate that energy-proportional speed scaling is nearly op-
timal [3, 6]. In this model, the power consumption P (s) of the system depends
only on the speed s, which itself depends on the number of jobs in the system.
Bansal, Chan, and Pruhs [6] showed that SRPT with the speed scaling function
P−1(n+ 1) is 3-competitive for an arbitrary power function P . Andrew et al. [3]
showed that the optimal policy is SRPT with a job-count-based speed scaling
function of the form s = P−1(nβ).

Fairness in dynamic speed scaling systems is also an important consideration.
In particular, speed scaling systems induce tradeoffs between fairness, robust-
ness, and optimality [3]. Processor Sharing (PS) is always fair, providing the
same expected slowdown for all jobs, even under speed scaling. However, the
unfairness of SRPT is magnified under speed scaling, since large jobs tend to
run only when the system is nearly empty, and hence at lower speeds. While PS
is good for fairness, it is suboptimal for both response time and energy [3].

3 System Model

3.1 Model Overview and Assumptions

We consider a single-server system with dynamically adjustable service rates.
Service rates are changed only when the system occupancy changes (i.e., at job
arrival and departure points). There is no cost incurred for changing the service
rate, and no limit on the maximum possible service rate.

The workload presented to the server is a sequence of jobs with random
arrival times and sizes. We assume that the arrival process is Poisson, with
mean arrival rate λ. The size (work) of a job represents the time it takes to
complete the job when the service rate is µ = 1. We assume that job sizes are
exponentially distributed and independent. Unless stated otherwise, we assume
that the mean job size is E[X] = 1. Table 1 summarizes our model notation.

In this paper, we consider two specific work-conserving scheduling policies,
namely PS and SRPT. PS shares the CPU service rate equally amongst all
jobs present in the system, while SRPT works exclusively on the job with the
least remaining work. We assume that the schedulers know all job sizes upon
arrival, or can at least estimate them dynamically [8]. A job in execution may
be preempted and later resumed without any context-switching overhead.

A speed scaling function, s(t), specifies the speed of the system at time t.
For coupled speed scaling, the speed at time t depends on the number of jobs
in the system, denoted by n(t), and thus is influenced by the scheduling policy.



Table 1. Model Notation

Symbol Description

λ Mean job arrival rate
µ Service rate
µn Service rate in state n
E[X] Average size (work) for each job
ρ Offered load ρ = λ/µ = λE[X]
pn Steady-state probability of n jobs in the system (a.k.a. π(n))
U System utilization U = 1− p0

n Number of jobs
φ(n) CPU speed as a function of number of jobs

t Time in seconds
n(t) Number of jobs in system at time t
s(t) CPU speed at time t
P (s) Power consumption when running at speed s
α Exponent in power consumption function P (s) = sα

The best known policy uses the speed function s(t) = P−1(n(t)β) [3]. In this
paper, we assume β = 1. We also consider P (s) = sα, which is commonly used
in the literature to model the power consumption of the CPU. Therefore, in the
coupled speed scaling model, we use s(t) = α

√
n(t) = n(t)1/α, where α ≥ 1.

When time t is not relevant, we use φ(n) to denote the CPU speed for n jobs.
In our work, we focus on the PS scheduling policy, which is an example of

a symmetric scheduling policy [11]. Such policies do not prioritize based on job
size, or any other job trait, but merely treat all arrivals equivalently. Symmetric
policies have the important property that their departure process is stochasti-
cally identical to their arrival process when time is reversed. Therefore, in the
M/GI/1 model, where arrivals are Poisson, the queue occupancy states form a
birth-death process regardless of the form of the job size distribution. This result
is formalized in the following theorem, the proof of which is given in [11]. A proof
for the special case of PS scheduling appears in [15].

Theorem 1 [11]. In an M/GI/1 queue with a symmetric scheduling policy,
the limiting probability that the queue contains n jobs is:

π(n) =
ρn∏n

i=0 φ(i)
π(0), for n > 0,

where the probability π(0) of the system being empty is given by:

π(0) =
1

1 +
∑∞
n=1

ρn∏n

i=1
φ(i)

.

Theorem 1 indicates that all symmetric polices have the same occupancy dis-
tribution for the same φ(n) function. Furthermore, this occupancy distribution
is insensitive to the job size distribution, and depends only on the mean job size.



Although FCFS is not a symmetric policy, it is interesting to note that the
occupancy distribution for M/M/1 FCFS is equivalent to the occupancy distri-
bution for M/GI/1 symmetric policies with φ(n) = 1. In fact, the occupancy
distribution under all non-size-based policies is equivalent for a general φ(n) [11,
22]. Therefore, in a single-server with some φ(n) speed-scaling discipline, in or-
der to study the occupancy distribution under M/GI/1 PS, it suffices to study
the occupancy distribution under M/M/1 FCFS. In our work, we consider the
special case of φ(n) = n1/α, and derive results for the average speed, occupancy,
and expected busy period length.

3.2 Markov Chain Model

We consider the dynamics of a system with sub-linear speed scaling. Specifically,
we consider running the system at speed s = n1/α when the system occupancy
is n jobs. We consider 1 ≤ α ≤ 3, which is the relevant range of interest for
Dynamic Voltage and Frequency Scaling (DVFS) on modern processors [19, 22].

The parameter α determines the set of distinct speeds available in our speed
scaling system. For the special case α = 1, the speeds scale linearly with occu-
pancy, much like the M/M/∞ queue, which provides a natural validation point
for our model. For α = 2, speeds scale less than linearly with system occupancy,
following the “square root speed scaling” approach recommended in the litera-
ture (i.e., the system speed when there are n jobs in the system is

√
n = n1/2).

For α = 3, speeds scale even more slowly with growing system occupancy: the
system speed when there are n jobs in the system is 3

√
n = n1/3). In the limiting

case of α =∞, the speeds scale so slowly that they are effectively constant (i.e.,
single-speed system). This provides another validation point for our model.

Figure 2 shows the Markov chain for our speed scaling system. The key
difference from Kleinrock’s classic M/M/∞ model is the change in the service
rates µn = n1/αµ. Analysis of this chain produces steady-state probabilities pn
that are analogous to those for the M/M/∞ chain, except for the effect of the
1/α exponent on all of the service rates.
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Fig. 2. Markov Chain for Coupled Speed Scaling System Model

4 Analytical and Numerical Results

In this section, we consider the M/M/1 queue with FCFS scheduling and φ(n)-
coupled speed scaling, where φ(n) = n1/α for α ≥ 1.



In the context of the “dynamic service rate” control problem, the M/M/1
FCFS queue with adjustable service rates has been studied in the literature [4,
10, 13, 22], and elegant results for state-dependent speeds that optimize the lin-
ear combination of average occupancy and average energy consumption are pre-
sented in [10, 22]. However, the proof for the formulation of the occupancy distri-
bution is not provided explicitly. For the sake of completeness, we briefly discuss
here the special case of n1/α-coupled speed-scaling systems.

Consider an n1/α-coupled speed-scaling system for some α > 0, and with
non-preemptive, non-size-based scheduling. Assume inter-arrival times are ex-
ponentially distributed with rate λ, and job sizes are exponentially distributed
with rate µ. Let ρ = λ/µ.

In this system, the queue occupancy evolves as a birth-death process since the
time between transitions is exponentially distributed. The CTMC for this model
is similar to the single-speed M/M/∞ in that transitions between states occur
upon state-independent arrivals with rate λ, and state-dependent departures
with rates µn. Unlike the M/M/∞, however, this is a single server model, with
at most one job in service at any point in time. When in state n > 0, provided
that no arrival occurs, the time to the next departure is the remaining work of the
job in service divided by the service rate n1/α. Since the service requirements
are exponentially distributed with rate µ, and the exponential distribution is
closed under scaling by a positive factor, the time until the next departure is also
exponentially distributed with rate µn = µn1/α. Therefore, the queue occupancy
forms a birth-death process, and the limiting probabilities (if they exist) are:

π(n) = π(0)
n−1∏
i=0

λi
µi+1

= π(0)
n−1∏
i=0

λ/µ

(i+ 1)1/α
= π(0)

ρn

(n!)1/α
, for n > 0,

where:
π(0) =

1∑∞
i=0

λ0λ1...λi−1
µ1µ2...µi

=
1∑∞

i=0
ρi

(i!)1/α

.

To show that the limiting probabilities exist, and that the chain is ergodic,
it suffices to show that the infinite sums converge. Based on the ratio test for
convergence of an infinite series, the series

∑∞
i=0 an converges if limn→∞ |an+1

an
| <

1. This condition holds in our case, since α > 0 and µ > 0. Specifically,

lim
n→∞

ρn+1/(n+ 1)!1/α

ρn/(n!)1/α
= lim
n→∞

ρ

(n+ 1)1/α
< 1.

Note that our speed scaling system is just a special case of Theorem 1 with
φ(n) = n1/α. Therefore, M/GI/1 queues with n1/α-coupled speed-scaling and
with symmetric scheduling policies, including PS, have the same occupancy dis-
tribution as M/M/1 FCFS with n1/α-coupled speed-scaling.

Unfortunately, we do not have closed form expressions for the foregoing
steady-state probabilities. However, it is possible to numerically evaluate the
mean and higher moments of the occupancy distribution. In fact, we can derive
bounds for the mean and variance of the occupancy distribution (see Section 4.2).



In the remainder of this section, we make a few observations about the shape of
the occupancy distribution.

The steady-state probability distribution in our system is a function of the
average load ρ and the speed-scaling parameter α. Recall that ρ is a function
of the arrival rate λ, and the job size based on rate µ. Note that increasing or
decreasing the arrival rate, while keeping the average load constant by adjusting
the average job size, results in the same occupancy distribution. The parameter
α determines the set of distinct speeds available in the coupled speed-scaling
system. For the special case α = 1, the speeds scale linearly with occupancy,
similar to the M/M/∞ queue. For α > 1, speeds scale sub-linearly with system
occupancy. For very large α, the speeds scale so slowly that the system effectively
behaves like a single-speed system.

The parameter α has three main impacts on the occupancy distribution, as
illustrated in prior work [9]. The first effect of increasing α is to shift the occu-
pancy distribution to the right (see Figure 1). This is intuitively expected, since
the slower service rates lead to a larger queue of jobs in the system. However,
as the backlog of jobs grows, the service rate is also increased, which eventually
stabilizes the system. This pendulum effect keeps the mode of the occupancy dis-
tribution close to ρα, which determines the average speed (ρ) required to serve
the load arriving to the system. The second effect of α > 1 is the distortion
of the Poisson distribution observed for system occupancy when α = 1. While
the structure of the distribution is similar to Poisson, the state probabilities
degenerate, and the Coefficient of Variation (CoV) is greater than that for a
Poisson distribution. The particular relationship observed is V ar[N ] ≈ αE[N ]
(see Figure 4(b) for graphical evidence of this observation). In the limiting case
of α → ∞, this distribution degenerates to an equal but negligible probability
for all states, indicating an unstable (infinite) queue. The third effect that we
observe when increasing α is the decline in π(0), which is the probability of hav-
ing an idle system. We call this the saturation effect, which is our main focus in
this paper. We explore the effect of α on the utilization, and the expected busy
period length, in Sections 4.3 and 4.4, respectively.

4.1 Mean and Variance of Speed

We first establish some fundamental results regarding the mean and variance of
the system speed for coupled speed scaling systems. Let random variables S and
N denote the speed of the server and the system occupancy, respectively. In the
n1/α-coupled speed-scaling system, S = N1/α.

Theorem 2. In an M/M/1 queue with n1/α-coupled speed-scaling, E[S] = ρ.
Furthermore, V ar[S] < 1 for any α ≥ 2.

The proof of the first half of Theorem 2 is fairly straightforward, based on
the definition of E[S] (see appendix). Intuitively, we expect the steady-state
average speed to be equal to the incoming load for any stable system (assuming
the speed is 0 when there are no jobs in the system). In [22], the general lower
bound for the time average speed in all stable speed-scaling systems is argued to
be S̄ ≥ ρ. Furthermore, S̄ = ρ for systems that run at speed 0 when the system



is empty. Our result in the appendix shows a stochastic proof for the special case
of M/M/1 with n1/α-coupled speed-scaling.

The proof for the second part of Theorem 2 is a bit more involved, but we
sketch it here. The essence is to use the fact that V ar[S] = E[S2]− E[S]2, and
to derive a tight bound on E[S2], since E[S]2 = ρ2. The algebraic derivation
culminates in V ar[S] ≤ 1− π(0) < 1, as stated (see appendix for details).

Figure 3 shows the effects of α and ρ on the system speed. Figure 3(a)
shows the mean speed, which scales linearly with ρ, regardless of the value of
α. Figure 3(b) shows the variance of speed. When α = 1, V ar[S] = ρ, since
the speeds follow the Poisson distribution with rate ρ (analagous to occupancy).
For α ≥ 2, the variance is always less than unity. The theoretical bound is not
especially tight, but it is a bound nonetheless.

For α ≥ 2, the variance of speed initially increases with ρ up to a point,
before decreasing and seemingly converging to a value well below 1. The intuition
behind this result is that for larger α, the speed changes are quite gradual,
especially when the occupancy is high. Thus the variance of the speed remains
low even when the occupancy fluctuates.
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Fig. 3. Analytical Results for System Speed in Coupled Speed Scaling Systems

4.2 Mean and Variance of Occupancy

We next establish results concerning the mean and the variance of system oc-
cupancy. The following Theorem 3 shows that the upper bound for occupancy
exceeds the lower bound by at most a polynomial function of α, which we specify
in Definition 1 below. Furthermore, Theorem 3 provides an upper bound on the
variance of system occupancy.

Definition 1. Let f : N → N be f(α) = α − 1 for α ∈ {1, 2, 3} and f(α) =
α(α− 1) for α ≥ 4.



Theorem 3. Consider an M/M/1 system with n1/α-coupled speed-scaling,
where α ∈ N. For f(α) as defined above, the mean system occupancy E[N ]
satisfies:

ρα ≤ E[N ] ≤ ρα + f(α).

Furthermore, for α ≥ 2, V ar[N ] ≤ E[N ](f(α) + 2α− 1).
Proof. See appendix.
Figure 4 shows the effects of α and ρ on the mean and variance of occupancy.

For α = 1, the occupancy distribution is Poisson, therefore the mean and vari-
ance are both equal to ρ. Note that unlike the variance of speed, which is less
than 1 for α ≥ 2, the upper bound for the variance of occupancy is an increasing
function of the average load (since E[N ] increases with load). Numerical and
simulation results show that V ar[N ] ≈ αE[N ] under heavy load. Figure 4(b) il-
lustrates this phenomenon, by plotting the variance-to-mean ratio for the system
occupancy.
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4.3 System Saturation

We next explore the saturation effect, in which system utilization U approaches
unity. Conversely, the probability π(0) of an empty system approaches zero.

Figure 5 shows π(0) as a function of load, both on a linear scale (Figure 5(a))
and a logarithmic scale (Figure 5(b)). We see that with an increase in α, the
probability of the idle state decreases quickly. Recall that U = 1 − π(0) is the
utilization of the system. For ρ > 1.6, systems with α ≥ 2 are utilized more than
90% of the time, and for ρ ≥ 4, the utilization exceeds 99.99% in these systems.

For an arbitrary small threshold ε > 0, one can define a “saturation load”
ρ at which π(0) ≤ ε. For example, when ε = 10−4, the saturation loads would



be near 9.2 for α = 1, 3.9 for α = 2, and 2.75 for α = 3. For ε = 10−6, the
saturation loads would be 13.5 (α = 1), 4.9 (α = 2), and 3.2 (α = 3).
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Fig. 5. Analytical Results for Saturation in Coupled Speed Scaling Systems

Recall that in single-speed systems, the mean occupancy under M/M/1
(FCFS or PS) is ρ

1−ρ . Furthermore, the average load ρ is equal to the utiliza-
tion U . Therefore, when utilization approaches 1, the mean occupancy under
FCFS (equivalently under PS) grows very quickly. In coupled speed-scaling sys-
tems, however, M/M/1 FCFS (equivalently PS) with n1/α-coupled speed-scaling
maintains robust performance even when the utilization is close to 1. That is,
the mean occupancy is always polynomial in ρ with degree α (see Theorem 3).

4.4 Mean Busy Period

In this section, we analyze the expected busy period length under M/M/1 with
n1/α-coupled speed-scaling. Recall that the length of a busy period, denoted by
B, is defined to be the time from when the system becomes busy until the next
time that all jobs have left the system, and the system becomes idle. The length
of an idle period is denoted by I.

Our main result is that the mean busy period grows at least exponentially
with ρ. We achieve this result by first establishing the following Theorem 4, and
then focusing on Corollary 1.

Theorem 4. Consider M/M/1 with n1/α-coupled speed-scaling with load
ρ = λ/µ, where λ is the arrival rate and µ is the rate of the (exponential) job
size distribution. Then, the expected busy period length exists, and it satisfies:

E[B] =
1
λ

∞∑
i=1

ρi

(i!)1/α



Proof. In a birth-death process, it is known that B and I form an alternating
renewal process, for which the following equality holds [15]:

U =
E[B]

E[B] + E[I]

where U is the limiting probability of the system being busy (i.e., utilization).
Therefore, the expected busy period length can be derived as a function of the
expected idle period length and the utilization as follows:

E[B] =
UE[I]
1− U

Note that the length of the idle period is the time until the next arrival.
Since the arrival process is Poisson with rate λ, E[I] = 1/λ. By definition, U =
1−π(0). Based on Theorem 1, the system is ergodic, and π(0) = 1∑∞

i=0
ρi

(i!)1/α

> 0.

Therefore,

E[B] =
1− π(0)
π(0)λ

=
1
λ

(
1

π(0)
− 1
)

=
1
λ

( ∞∑
i=0

ρi

(i!)1/α
− 1

)
=

1
λ

∞∑
i=1

ρi

(i!)1/α
. ut

Corollary 1. In an M/M/1 with n1/α-coupled speed-scaling, for any α ≥ 1,
E[B] satisfies:

E[B] ≥ 1
λ

(eρ − 1)

Proof. It is known that
∑∞
i=0

ρi

i! = eρ. The result then follows directly. ut
This corollary shows that the mean busy period grows at least exponentially

with load ρ, as stated earlier. Note, however, that the busy period duration is
sensitive to both the arrival rate and the average load, while U is only a function
of the average load.

Figure 6 illustrates the effects of α and ρ on the expected busy period length.
There are three pairs of lines in this graph, corresponding to α = 3 (highest pair),
α = 2 (middle pair), and α = 1 (lowest pair), respectively. Within each pair of
lines, the flatter one shows the expected busy period length when the load is
changed via the arrival rate (i.e., ρ = λ, since µ = 1), while the steeper line
shows the expected busy period length when the load is changed via the mean
of the job size distribution (i.e. ρ = E[X] = 1/µ, since λ = 1). As expected,
the trend is similar in both cases, with the lines differing by a factor of λ (note
the logarithmic vertical scale on the graph). The lines also differ at the leftmost
edge of the graph, since E[B] ≈ E[X] when the load is very light (i.e., ρ << 1).

The lower bound given by Corollary 1 is for the general case of α ≥ 1. When
α ≥ 2, the bound is very loose, and the expected busy period length grows much
faster than eρ. This result makes sense intuitively, since the system saturates
sooner, and much more dramatically.
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5 Simulation Results

In this section, we use discrete-event simulation to explore saturation effects in
coupled speed scaling systems. Our simulator supports different schedulers (e.g.,
FCFS, PS, SRPT) and speed scaling functions (e.g., coupled, decoupled), and
reports results for speeds, response times, energy, and busy period structure [18].
We use this simulator to study the autoscaling dynamics of PS and SRPT.

In our first experiment, we use our simulator to explore the busy period
structure of PS-based speed scaling systems. As the load offered to a speed
scaling system is increased, the number of busy periods diminishes until there is
a single massive busy period that includes all jobs. We refer to this phenomenon
as saturation, since U → 1.

Figure 7(a) illustrates the saturation effect, based on simulation of a PS-
based system with linear speed scaling (i.e., α = 1). The horizontal axis shows
the offered load based on the arrival rate λ, assuming that the mean job size
E[X] = 1, while the vertical axis shows the value of different busy period metrics,
on a logarithmic scale.

The downward-sloping diagonal line on the graph shows the number of busy
periods observed, in a simulation run with a total of 10,000 jobs. Furthermore,
the dashed line just beneath it shows the number of busy periods that have only
a single job. At light load, there are thousands of busy periods, and most have
just a single job. As the load increases, the number of busy periods decreases, as
does the number of singleton busy periods. The straight-line behaviour on this
log-linear plot indicates exponential decline, consistent with the mathematical
model.

In Figure 7(a), the upward-sloping dotted line shows the average number of
jobs per busy period, while the line above it shows the maximum number of
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jobs observed in any of the busy periods seen. Both of these lines increase with
load, and asymptotically approach a limit that reflects a single massive busy
period containing all of the jobs. For α = 1, this limit is near λ = 9, though the
simulation results are somewhat noisy near this point.

Analytically, from the Poisson distribution, we know that p0 = e−λ when
α = 1. For some suitably chosen small ε > 0, this formula can be used to
determine the load λ at which p0 ≤ ε. For example, for ε = 0.0001, solving
λ = −ln(ε) yields λ = 9.2, which closely matches the simulation results.

The solid line in Figure 7(a) shows the mean busy period duration calculated
using our analytical result from Theorem 4, while the black squares show the
simulation results. The close agreement provides validation for our model.

Figures 7(b) and (c) show the results for PS when α = 2 and α = 3, re-
spectively. Note that the horizontal scales of these graphs differ from those in
Figure 7(a). The busy period dynamics in these graphs are structurally simi-
lar to Figure 7(a), wherein light load has many very small busy periods, while
heavier loads have fewer and larger busy periods. The primary differences from
Figure 7(a) are the distinct downward curvature for the lines showing the num-
ber of busy periods, implying a decrease that is faster than exponential as load
is increased. Furthermore, the point at which saturation occurs, as load is in-
creased, arises sooner when α is larger. For example, the load levels at which
saturation occurs in the simulation are λ = 5 for α = 2, and λ = 3 for α = 3.
These closely match the predictions from our saturation analysis.

Despite the saturation of the utilization U , the speed scaling system still
remains stable, even if the load is further increased. The probability of the system
returning to the empty state becomes very small, but the system is still recurrent.

The right-hand side of Figure 7 shows the busy period results from our second
set of simulation experiments, for an SRPT-based speed scaling system. Note
that on each row of graphs, the horizontal scales for PS and SRPT plots differ.

The main observation here is that the saturation load for SRPT is different
than under PS scheduling. In particular, the SRPT system saturates sooner. One
implication of this observation is that there exist load levels at which SRPT is
beyond saturation, while PS is not. In such scenarios, there will be significant
unfairness for large jobs under SRPT (i.e., starvation). That is, while the average
number of jobs in the system is the same for both PS and SRPT, the SRPT sys-
tem tends to retain the largest jobs, causing anomalously high response times [9].

Another anecdotal observation from the simulation results is that the busy
period structure for an SRPT system with speed scaling exponent α is qualita-
tively similar to that for a PS system with speed scaling exponent 2α (at least
over the range of parameters considered here). Figure 8 illustrates this result,
both for the number of busy periods in Figure 8(a), and the busy period duration
in Figure 8(b). Furthermore, the saturation point in Figure 8(a) asymptotically
approaches 1 (as expected) when α is increased from 1 to 8.
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6 Conclusions

In this paper, we have used mathematical analysis and simulation to explore
the autoscaling properties of dynamic speed scaling systems. We have assumed
coupled (i.e., job-count-based) speed scaling, with PS as a representative sym-
metric scheduler. We focus particularly on heavy loads that cause the system to
approach saturation (i.e., U → 1).

The main conclusions from our work are the following. First, the mean and
variance of the system speed are bounded, as long as the offered load is finite.
Second, the mean and variance of system occupancy are tightly bounded by
polynomial functions of ρ and α. Third, the mean busy period in a PS-based
coupled speed scaling system grows at least exponentially with offered load when
α = 1, and even faster than this when α > 1. Finally, we show that SRPT-based
systems saturate sooner than the corresponding PS-based system. While such
a system remains stable (in terms of job occupancy), it can manifest extreme
unfairness due to starvation of the largest jobs.

Our ongoing work is exploring tighter bounds for the mean busy period in
both PS and SRPT systems.
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A Appendix

This section contains proofs for the two main theorems in Section 4.

A.1 Proof of Theorem 2

We prove each part of Theorem 2 separately, using the following two lemmas.
Lemma 1. In an M/M/1 queue with n1/α-coupled speed-scaling, E[S] = ρ.
Proof. Let sn = n1/α denote the processing speed at occupancy n. The prob-

ability of the server running at this speed is π(n), which is the probability of
having n jobs in the system. Therefore, the expectation of speed is:

E[S] =
∞∑
i=0

siπ(i) =
∞∑
i=1

siπ(i) =
∞∑
i=1

i1/απ(0)
ρi

(i!)1/α
= π(0)

∞∑
i=1

i1/α
ρi

i1/α(i− 1)!1/α

= ρπ(0)
∞∑
i=1

ρi−1

(i− 1)!1/α
= ρπ(0)

∞∑
j=0

ρj

(j!)1/α
= ρπ(0)

1
π(0)

= ρ. ut

Lemma 2. In an M/M/1 queue with n1/α-coupled speed-scaling, V ar[S] < 1
for any α ≥ 2.

Proof. Let sn be the speed at occupancy n, which is observed with probability
π(n). From Lemma 1 above, we know that E[S] = ρ.

V ar[S] = E[S2]− E[S]2 =
∞∑
i=0

s2iπ(i)− ρ2

Recall that si = i1/α. Therefore, the first two terms of the summation are 0
and π(1) = ρπ(0).

V ar[S] =
∞∑
i=2

i2/απ(i) + ρπ(0)− ρ2 =
∞∑
i=2

i2/απ(0)
ρi

(i!)1/α
+ ρπ(0)− ρ2

= π(0)
∞∑
i=2

i2/α

i1/α(i− 1)1/α
ρi

((i− 2)!)1/α
+ ρπ(0)− ρ2

= ρ2π(0)
∞∑
i=2

(
i

i− 1

)1/α
ρi−2

((i− 2)!)1/α
+ ρπ(0)− ρ2

For the purpose of bounding V ar[S], we note that
(

i
i−1

)1/α

≤
(

i
i−1

)1/2

for

α ≥ 2 and that
(

i
i−1

)1/2

≤ (1 + 1
i ) for i ≥ 2. Thus,

V ar[S] ≤ ρ2π(0)
∞∑
i=2

(
1 +

1
i

)
ρi−2

((i− 2)!)1/α
+ ρπ(0)− ρ2



= ρ2π(0)
∞∑
i=2

ρi−2

((i− 2)!)1/α
+ π(0)

∞∑
i=2

ρi

i((i− 2)!)1/α
+ ρπ(0)− ρ2

With an index transform j = i − 2, the first summation is equal to 1/π(0).
Therefore,

V ar[S] ≤ ρ2 + ρ2π(0)
∞∑
i=2

ρi−2

i((i− 2)!)1/α
+ ρπ(0)− ρ2

= π(0)
∞∑
i=2

ρi

i((i− 2)!)1/α
+ ρπ(0)

Again, for bounding purposes, we note that 1/i < 1/(i(i−1))1/α for all i ≥ 2
and α ≥ 2. Therefore:

V ar[S] ≤ π(0)
∞∑
i=2

ρi

(i!)1/α
+ ρπ(0) = π(0)

∞∑
j=0

ρj+2

((j + 2)!)1/α
+ ρπ(0)

= π(0)

 ∞∑
j=0

ρj

(j!)1/α
− ρ− 1

+ ρπ(0) = π(0)
∞∑
j=0

ρj

(j!)1/α
− π(0)

Based on Theorem 1, the summation in the first term is equal to 1/π(0), and
π(0) > 0, for all α > 0 and ρ > 0. Therefore, V ar[S] ≤ 1− π(0) < 1. ut

A.2 Proof of Theorem 3

We provide here a complete proof for our main result in Theorem 3. We first pro-
vide a useful algebraic bound (Claim 1), and then use this bound to establish our
formal results for E[N ] and V ar[N ] using Lemma 3 and Lemma 4, respectively.

Claim 1. For any α ∈ N, i ≥ α, and f(α) as given in Definition 1:(
iα

i(i− 1)(i− 2) . . . (i− α+ 1)

)1/α

≤ 1 +
f(α)
i
.

Proof. Both sides of the inequality above are positive, therefore, we obtain
the following equivalent inequality by raising both sides to the power of α:(

iα

i(i− 1)(i− 2) . . . (i− α+ 1)

)
≤ (i+ f(α))α

iα

This is equivalent to:

i2α ≤ (i+ f(α))αi(i− 1)(i− 2) . . . (i− α+ 1)

For α ∈ {1, 2, 3}, for which f(α) = α − 1, it is straightforward to verify the
foregoing inequality by substitution. For α = 1, the two sides are equal. For



i ≥ α = 2, f(α) = 1, and (i + 1)2i(i − 1) = i4 + i3 − i2 − i > i4. Similarly, for
i ≥ α = 3, f(α) = 2, and (i+ 2)3i(i− 1)(i− 2) = i6 + 3i5− 4i4− 16i3 + 16i > i6.

When α ≥ 4, for which f(α) = α(α − 1), the following verifies the stated
inequality:

(i+ α(α− 1))αi(i− 1)(i− 2) . . . (i− α+ 1) ≥ (i+ α(α− 1))α(i− α+ 1)α

= ((i+ α(α− 1))(i− (α− 1)))α = ((i2 − i(α− 1) + iα(α− 1)− α(α− 1)2)α

= ((i2 + (i− α)(α− 1)2)α ≥ i2α. (since i ≥ α ≥ 1) ut

Lemma 3. Consider an M/M/1 system with n1/α-coupled speed-scaling,
where α ∈ N. For f(α) as given in Definition 1, the mean system occupancy
E[N ] satisfies:

ρα ≤ E[N ] ≤ ρα + f(α).

Proof. The lower bound in Lemma 3 (and Theorem 3) is shown in [22] for a
more general coupled speed-scaling model. For our special case of n1/α-coupled
speed scaling, this lower bound still applies. So we only need to focus on the
upper bound ρα + f(α).

Based on the probability distribution given earlier, the expected occupancy
is:

E[N ] = π(0)
∞∑
i=0

i
ρi

(i!)1/α
=

1∑∞
i=0

ρi

(i!)1/α

(
α−1∑
i=0

i
ρi

(i!)1/α
+
∞∑
i=α

i
ρi

(i!)1/α

)

We can rewrite the right-most summation as follows:

∞∑
i=α

i
ρi

(i!)1/α
=
∞∑
i=α

ρi

((i− α)!)1/α

(
iα

i(i− 1)(i− 2) . . . (i− α+ 1)

)1/α

.

Using the inequality from Claim 1, we have:

∞∑
i=α

i
ρi

(i!)1/α
≤
∞∑
i=α

ρi

((i− α)!)1/α

(
1 +

f(α)
i

)

=
∞∑
i=α

ρi

((i− α)!)1/α
+ f(α)

∞∑
i=α

ρi

i((i− α)!)1/α

= ρα
∞∑
i=α

ρi−α

((i− α)!)1/α
+ f(α)

∞∑
i=α

ρi

i((i− α)!)1/α

= ρα
∞∑
i=0

ρi

(i!)1/α
+ f(α)

∞∑
j=0

ρj+α

(j + α)(j!)1/α
.



Adjusting the index i in the sums, and noting that 1
j+α ≤

1
((j+1)(j+2)...(j+α))1/α

,
we have:

∞∑
i=α

i
ρi

(i!)1/α
≤= ρα

∞∑
i=0

ρi

(i!)1/α
+ f(α)

 ∞∑
j=0

ρj

(j!)1/α
−
α−1∑
j=0

ρj

(j!)1/α

 .

Using this inequality in place of the rightmost summation in our earlier ex-
pression for E[N ], we can bound E[N ] from above as follows:

E[N ] ≤ 1∑∞
i=0

ρi

(i!)1/α

α−1∑
i=0

i
ρi

(i!)1/α
+ ρα

∞∑
i=0

ρi

(i!)1/α
+ f(α)

∞∑
j=0

ρj

(j!)1/α
− f(α)

α−1∑
j=0

ρj

(j!)1/α


Since f(α) ≥ 0, we can ignore the negative term (and the negligible one,

which is adequately captured in our f(α)), and settle for a simpler (but looser)
upper bound. Thus, we have E[N ] ≤ ρα + f(α), as stated. ut

Lemma 4. Consider an M/M/1 system with n1/α-coupled speed-scaling,
where α ∈ N. For α ≥ 2, V ar[N ] ≤ E[N ](f(α) + 2α− 1).

Proof. The variance of occupancy is V ar[N ] = E[N2] − E[N ]2. First, we
derive an upper bound for E[N2].

E[N2] = π(0)
∞∑
i=0

i2
ρi

(i!)1/α

= π(0)
α−1∑
i=0

i2
ρi

(i!)1/α
+π(0)

∞∑
i=α

i

(
iα

i(i− 1)(i− 2) . . . (i− α+ 1)

)1/α
ρi

((i− α)!)1/α

≤ π(0)
α−1∑
i=0

i2
ρi

(i!)1/α
+ π(0)

∞∑
i=α

i

(
1 +

f(α)
i

)
ρi

((i− α)!)1/α
(using Claim 1)

= π(0)
α−1∑
i=0

i2
ρi

(i!)1/α
+ π(0)

∞∑
i=α

i
ρi

((i− α)!)1/α
+ π(0)

∞∑
i=α

f(α)
ρi

((i− α)!)1/α

= π(0)
α−1∑
i=0

i2
ρi

(i!)1/α
+ ραπ(0)

∞∑
j=0

(j + α)
ρj

(j!)1/α
+ f(α)ραπ(0)

∞∑
j=0

ρj

(j!)1/α

= π(0)
α−1∑
i=0

i2
ρi

(i!)1/α
+ ραπ(0)

∞∑
j=0

j
ρj

(j!)1/α
+ αραπ(0)

∞∑
j=0

ρj

(j!)1/α
+ f(α)ρα

= π(0)
α−1∑
i=0

i2
ρi

(i!)1/α
+ ραE[N ] + αρα + f(α)ρα.

Furthermore,

π(0)
α−1∑
i=0

i2
ρi

(i!)1/α
≤ π(0)

α−1∑
i=0

(α− 1)i
ρi

(i!)1/α



≤ (α− 1)

(
π(0)

∞∑
i=0

i
ρi

(i!)1/α
− π(0)

∞∑
i=α

i
ρi

(i!)1/α

)
≤ (α− 1)E[N ].

Thus,
E[N2] ≤ (α− 1)E[N ] + ρα(E[N ] + α+ f(α)).

Using this upper bound for E[N2], we can bound V ar[N ]:

V ar[N ] = E[N2]− E[N ]2 ≤ (α− 1)E[N ] + ραE[N ] + αρα + f(α)ρα − E[N ]2

= E[N ]
(
ρα(f(α) + α)

E[N ]
+ (α− 1) + ρα − E[N ]

)
.

Based on Lemma 3, ρα ≤ E[N ]. Therefore:

V ar[N ] ≤ E[N ]
(
ρα(f(α) + α)

ρα
+ (α− 1) + ρα − ρα

)
= E[N ](f(α)+2α−1). ut


