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Abstract—Traffic in today’s edge networks is diverse, exhibit-
ing many different patterns. This paper focuses on periodic
network traffic, which is often used by known network services
(e.g., Network Time Protocol, Akamai CDN) as well as by
malicious applications (e.g., botnets, vulnerability scanning). We
use a simple and flexible SQL-based approach as our com-
putational model for detecting periodic traffic, and apply it
to the analysis of seven weeks of Bro connection logs from a
campus edge network. Our results show that periodic traffic
analysis is effective for detecting P2P, gaming, cloud, scanning,
and botnet traffic flows, which often exhibit periodic network
communications. We present a classication taxonomy for periodic
traffic, and provide an in-depth characterization of this traffic
on our campus edge network.

I. INTRODUCTION

Traffic flows in modern edge networks are diverse and
voluminous, with many different patterns [8], [12], [23], [26].
These patterns can arise from users interacting with network-
based services, often in a diurnal fashion [18], or by automated
systems that respond to specific events [26]. Network operators
need an understanding of these patterns in order to differentiate
between normal and abnormal behaviors on their networks.

The pattern of interest in our work is periodic traffic,
in which communication events occur repeatedly at regular
intervals within a specified time frame. Periodic network traffic
is especially relevant in network security [4], [5], [9], [22],
since it may indicate anomalous [17] or malicious [29], [30]
activities. For example, many botnets are known to use peri-
odic communications for command and control channels [10],
[14], [15]. For this reason, periodicity detection is an important
component in many intrusion detection systems [7], [13], [19].

Periodicity analysis can use different types of network data,
such as netflow information [7], control plane information [2],
and application-level information [10]. Detection techniques
include statistical methods [20], spectral analysis [5], [9], and
autocorrelation [30], [35]. Detecting the absence of periodicity
is also important, when systems that should be producing
periodic traffic cease doing so [3].

Periodicity detection is a well-established area of research.
In most works, periodicity is represented as a numerical score
derived from metadata associated with a set of flows. Some
periodicity detection methods make a binary classification
of flows as periodic or not [2], [5], [35], by comparing
their periodicity score to a threshold value. Other techniques
consider periodicity as a continuous gradient [10], [13], in
which flows range from weakly to strongly periodic.

Despite substantial prior research on detecting periodic
traffic, relatively little effort has been devoted to understanding
the pervasiveness of periodic network traffic in edge networks.
For example, network security researchers sometimes evaluate
new detection techniques with artificially-generated datasets
that exclude legitimate periodic traffic [2], [5], [9], [20]. We
argue that simply detecting periodic traffic is insufficient, and
that deeper understanding is needed. Such analysis is usually
only a secondary consideration in prior research [12], [17],
[26], while it is the central focus in our work.

In this paper, we focus explicitly on the analysis and
characterization of periodic network traffic. We use a simple
and flexible SQL-based method to extract periodic traffic
from empirical connection-level summary data. We use our
empirical data analysis to illustrate how periodic traffic reflects
the typical operation of an edge network, as well as to identify
malicious traffic activities on the network.

The main contributions of our paper are: (1) the imple-
mentation of a flexible, procedural, and highly-parallelizable
computational model for the extraction of periodic network
traffic using SQL; (2) an evaluation of the sensitivity and
robustness of our SQL-based approach; (3) a taxonomical
classification of periodic network traffic based on its structural
properties; and (4) an in-depth characterization of the periodic
traffic composition on a modern campus edge network. We
also discuss the limitations of our approach, and some of its
technical challenges for scalability and robustness.

The main insights that emerge from our work are:

• a modular SQL-based approach provides a flexible and
powerful means by which to analyze periodic traffic;

• periodic traffic is pervasive in modern network appli-
cations, including gaming, CDN, P2P, and cloud-based
services, as well as malicious traffic;

• periodic traffic is diverse in its structural properties, and
often very transient in its existence, making it a challenge
to detect; and

• P2P applications account for about half of the periodic
traffic detected in our empirical study.

The remainder of this paper is organized as follows. Sec-
tion II discusses prior related work. Section III introduces
our empirical dataset. Section IV describes our method for
identifying periodic traffic. Section V gives an overview of our
traffic analysis results, and presents our traffic classification
taxonomy. Section VI characterizes the periodic traffic that
we observed. Finally, Section VII concludes the paper.



II. BACKGROUND AND RELATED WORK

The study of periodic behaviors is foundational in many sci-
entific disciplines, including astronomy [21], biology [34], and
computer science [25], [35]. In our context, we are interested
in periodicity that is present in network-level communication
patterns.

The simplest periodicity detection techniques use statistical
analysis on selected features of network traffic. Hubballi and
Goyal [20] proposed a method that computes the standard
deviation of the time between successive flows on the network.
If the value is below a threshold, the traffic is deemed
periodic; otherwise, it is not. This method was extended by
van Splunder [35] to analyze netflow data from a large edge
network. Eslahi et al. [10] used statistical methods to detect
periodic HTTP traffic.

Spectral analysis methods are also popular for periodicity
detection. AsSadhan and Moura [2] calculated the Discrete
Fourier Transform (DFT) for a time series and then generated
a periodogram, whose peak is then tested for significance.
Similarly, Heard et al. [18] used the Fast Fourier Transform
(FFT) to calculate a periodogram for time series connection
data. Huynh et al. [22] computed the FFT of a time series
of netflow records to produce a frequency spectrum analysis.
Chen et al. [9] augmented the DFT approach by incrementally
expanding the duration of the time series used, in order to find
periodic patterns. Bartlett et al. [5] used wavelets to transform
time series netflow data into the spectral domain for analysis.

Autocorrelation is another technique for periodicity detec-
tion. For example, van Splunder [35] calculated the autocor-
relation of a time series of netflow data to identify potential
periods. The periodicity of the traffic was then tested using
the method presented by Hubballi and Goyal [20]. Similarly,
Qiao et al. [30] used the circular autocorrelation function to
identify candidate periods, and assess the periodicity with
different algorithms. Gu et al. [15] calculated autocorrelation
on time series data, focusing on the number of peaks. Traffic
is considered periodic if the autocorrelation is strong enough.

While there has been considerable research on periodicity
detection, less attention has been devoted to understanding
periodic behavior. For instance, in their characterization of
video game traffic, Feng et al. [12] indicated that this traffic
was highly periodic. Periodicity also arises in some video
streaming services [31]. Nikaein et al. [26] identified peri-
odic traffic as a subset of machine-type communications. He
et al. [17] noted that periodic traffic can indicate network
congestion. While periodicity was observed in these specific
domains, it was not explored more broadly.

A few efforts have been made to understand periodicity in
general, but these studies are rather limited. Bartlett et al. [4],
[5] developed a periodicity detector, and identified several
broad classes of periodic traffic, including regular OS updates,
P2P traffic, and adware. Others used these insights to refine
periodicity detection [29], [30], though the characterization
of this traffic was not explored further. Heard et al. [18]
recognized the need to explore the composition of periodic

traffic. However, they only observed the traffic of a single
desktop computer for one week. Such a study is too small for
a comprehensive understanding of periodic traffic on a modern
edge network, such as a campus edge network.

III. EMPIRICAL DATASET

In this paper, we study the University of Calgary’s network,
as an example of a typical campus edge network. Our network
is used by 32,000 undergraduate/graduate students and 3,000
faculty/staff. Our data was collected from a mirrored stream
of all the traffic that passes through the edge routers on our
campus network. Data collection was conducted for a 7-week
period from January 1, 2017 to February 17, 2017. The winter
academic term started on January 8, and the mid-term break
occurred on February 18, so classes were in session throughout
most of the data collection period.

Figure 1 shows a stacked graph view of our edge network
usage during our measurement period. Inbound traffic (upper
axis) peaks daily near 4 Gbps, while outbound traffic (lower
axis) rarely exceeds 1 Gbps. Traffic volumes are highest on
weekdays when students are on campus. TCP is the dominant
transport protocol, with UDP a distant second.

Fig. 1. Traffic profile on University of Calgary network.

This traffic was processed in real-time into connection
summaries using Bro [28], which is an open-source network
security monitoring tool often used for intrusion detection. The
connection-level metadata was recorded for all TCP, UDP, and
ICMP traffic. Our logs included over 15 billion connection
summaries, resulting in a 3.5 TB dataset. Each connection
summary represents communication from a sending host hs
to a receiving host hr, where one of the hosts is on the
campus network, and the other elsewhere on the Internet.
(Our monitor does not see connections between hosts within
our network.) Relevant fields from the connection-level data
were then loaded into a Vertica1 database, and analyzed
for periodicity using SQL queries, as described in the next
section. An important feature of Vertica is that it automatically
exploits parallelism in query execution, without any extra
effort required from the network analyst. We used the (free)
community edition of Vertica on a three-node compute cluster
to analyze our dataset.

IV. PERIODIC TRAFFIC MODEL

This section discusses the modeling methodology that we
used to detect periodic traffic in our empirical data. For ease

1https://www.vertica.com/



of exposition, we draw upon the terminology from simulation
modeling to describe our approach [24]. Specifically, we start
from a high-level conceptual model, which is then refined into
a specification model, followed by a computational model.
Finally, we discuss several extensions of the model, as well
as its sensitivity and robustness.

A. Conceptual Model

Conceptually, periodic traffic is simple. It consists of re-
peated occurrences of an “event” at regularly-spaced time
intervals. For example, the event could be the occurrence of a
packet transmission or a network connection attempt.

Figure 2 shows several pedagogical examples of periodic
and non-periodic traffic. These graphs are time series represen-
tations, showing the timing of connections along the horizontal
axis, as well as the byte volumes sent (lower half of plot) and
received (upper half) on each connection.

Figure 2(a) shows the periodic communication pattern be-
tween two NTP servers (one on campus, one elsewhere),
communicating daily for 48 days. Since the NTP service is
for time clock synchronization, one would expect a strongly
periodic pattern in the communications, and that is indeed
what is observed. This pattern is distinctly different from the
non-periodic traffic illustrated in Figure 2(b). In the latter
graph, two transport-level endpoints initiate connections at
seemingly arbitrary points in time over a span of three hours.
This pattern is non-periodic.

Despite the simplicity of the periodic traffic concept, there
are many variations on its patterns. Figure 2(c) shows a pair of
entities that initiate connections every half-hour for 3 hours.
This traffic has periodic structure. However, Figure 2(d) shows
a different pair of communicants that initiate contact only three
times (rather than six) within the same 3-hour duration of
observation. Whether this is deemed periodic or not depends
on how you define periodicity, which is what we discuss next.

B. Specification Model

Several decisions are necessary to define period traffic
precisely. These decisions involve the number and type of
network events to be detected, the time duration over which
detection is to be performed, the minimum and maximum
periods to be detected, and the laxity with which periodicity
is to be considered. Table I summarizes our definitions.

TABLE I
DEFAULT PARAMETER VALUES FOR PERIODICITY DETECTION

Item Setting
Network event Connection attempt

Minimum number of events 4
Minimum period 10 seconds
Maximum period 12 days

Variance threshold (laxity) θvar < 0.5

In our work, we define network events at the connection
level, rather than the packet level. For TCP, a connection
attempt involves a SYN packet being transmitted from one
transport-level endpoint (i.e., source IP address and port) to

another (i.e., destination IP address and port). Depending
on the application, connection attempts may or may not be
answered by the recipient; this does not matter in our defini-
tion. Successive connection attempts may use a different port
number, either at the source or the destination, but not both, so
that at least one of the transport-level endpoints (i.e., address-
port pair) remains the same. An analagous definition can be
used for connection-less UDP-based traffic, as well as for
network-level ICMP echo traffic, by treating packets between
new communication endpoints as a connection initiation.

We are interested in the timing relationship between con-
nection attempts. We require at least four connection attempts
(i.e., three full periods of the periodic pattern) in order to
assess the variability in the connection inter-arrival time. In our
current implementation, we restrict the period to be no shorter
than 10 seconds, and no longer than 12 days. However, these
are easily settable configuration parameters in our model.

The final parameter in our periodic traffic model is the laxity
for the periodicity detection. We use a parameter θvar as a
threshold for the variability permitted in the periodic pattern.
Setting θvar = 0 is the strictest definition of periodicity, with
exactly periodic behavior, while setting θvar > 0 allows some
laxity in the timing between events. Note that θvar can be
defined in several ways, including variance of the connection
inter-arrival times, relative variance of the connection inter-
arrival times (i.e., coefficient of variation), and so on. We
use absolute variance as our default, but also consider relative
variance in our work [16].

C. Computational Model

To extract periodic traffic from our empirical data, we use
an SQL-based implementation of the periodicity detection
method proposed by Hubballi and Goyal [20]. Algorithm 1
below shows the pseudo-code for our computational model,
the details of which are described in the following paragraphs.

1Algo r i t hm 1 : P e r i o d i c T r a f f i c E x t r a c t i o n
2
3WITH
4M AS (
5SELECT
6hs | | ’ / ’ | | hr | | ’ / ’ | | port | | ’ / ’ | | proto AS key , ts
7FROM c o n n e c t i o n t a b l e
8) ,
9c o u n t s AS (
10SELECT key AS id , COUNT( key ) AS n
11FROM M
12GROUP BY i d
13) ,
14pruned AS (
15SELECT M . key , c o u n t s . id , M . t s AS t s
16FROM M , c o u n t s
17WHERE M . key = c o u n t s . i d
18AND c o u n t s .n BETWEEN θmin AND θmax

19) ,
20d i f f s AS (
21SELECT key , t s−p r e v t s AS d i f f
22FROM (
23SELECT key , t s ,
24LAG( t s , 1 ) OVER (
25PARTITION BY key



(a) Network Time Protocol (NTP) (b) Non-periodic traffic (c) Continuous periodic traffic (d) Transient periodic traffic
Fig. 2. Examples of periodic and non-periodic patterns in network traffic.

26ORDER BY key ASC, t s ASC) AS p r e v t s
27FROM pruned
28)
29AS sub0
30GROUP BY key , t s , p r e v t s
31ORDER BY key
32) ,
33summary AS (
34SELECT key , AVG( d i f f ) AS Per iod ,
35VAR SAMP( d i f f ) AS V
36FROM d i f f s
37GROUP BY key
38)
39
40SELECT key , Pe r iod , V
41FROM summary
42WHERE V < θvar ;

Our analysis starts with Bro’s connection-level2 summaries.
Bro defines each connection using a standard 5-tuple: source
IP and port, destination IP and port, and transport protocol.
Each connection summary produced by Bro includes this 5-
tuple, as well as a timestamp indicating when the first packet
in the connection was seen, plus other additional information,
such as the number of bytes transferred.

Our analysis requires only a subset of the fields in each
connection summary record. We denote each connection as
c = (ts, proto, hs, hr, port), where the port is the destination
port on the “server” end of the connection summary record.
That is, regardless of the server’s location, we focus on
successive connections issued by a host (on different ports)
when contacting a particular transport-level endpoint (i.e.,
server/port). When referring to an attribute of a specific
connection, we use dot notation. For example, ci.ts refers to
the timestamp of connection ci.

We define a candidate connection set to be a set S of n
connections S = {c1, c2, ...cn} all with the same hs, hr,
protocol, and port. Within each set S, the connections are
timestamp-ordered (i.e., ci.ts ≤ ci+1.ts for all 0 < i < n)

Periodicity detection begins by grouping all connections
into distinct connection sets based on their attributes. This pro-
duces a set M = {S1, S2, ...Sm} of m connection sets, where
m is the number of distinct hs/hr/protocol/port combinations.

We then prune the connection sets, since many sets contain
either too few or too many connections to manifest periodicity.
To do this, we specify a minimum period (pmin) and maximum

2A description of the format of Bro’s conn log is available at https://www.
bro.org/sphinx/scripts/base/protocols/conn/main.bro.html#type-Conn::Info

period (pmax) for periodicity detection within a duration T .
From these values, we calculate θmin = T/pmax, as well as
θmax = T/pmin. The cardinality nj of each connection set
Sj ∈ M is then calculated, and any Sj with nj < θmin or
nj > θmax is removed from M .

After the pruning step, for each set Sj ∈ M , we calculate
the elapsed time between successive connections ci ∈ Sj , for
0 < i < n. We denote this as Dj = {d1, d2, ....dn−1} where
di = ci+1.ts − ci.ts. Finally, for each set Dj of timestamp
differences, we calculate the sample variance V arj . If V arj
is below a specified threshold θvar, then the connection Cj is
classified as periodic. Otherwise, it is not.

An example of an SQL-like query that implements this
process is presented in Algorithm 1. While there may be more
computationally-efficient ways to extract the same informa-
tion, we prefer this step-by-step procedural formulation for its
intuitive simplicity. The modular structure also makes it easy
to explore parameter sensitivity, by recording the cardinality
of the sets generated at each intermediate step. Furthermore,
Vertica automatically exploits the inherent parallelism in the
query execution.

The WITH query in Algorithm 1 contains multiple clauses.
The first clause (lines 4-7) constructs M , the set of m candi-
date connection sets. The second clause (lines 9-12) computes
the cardinality of each connection set, used for pruning in
the third clause (lines 14-18). The fourth clause (lines 20-31)
calculates the time differences between successive connections
within a set. The fifth clause (lines 33-37) calculates the mean
and variance of the time differences. Finally, the SELECT
clause at the end (lines 40-42) retrieves the sets that satisfy
the variance threshold.

D. Model Sensitivity

To understand how our model parameters affect the results,
we evaluated the effect of tuning the variance threshold.

Figure 3 illustrates how the variance threshold affects peri-
odic traffic detection on one day’s worth of traffic. For these
sensitivity tests, we set pmin = 10 seconds and pmax =
21, 600 (6 hours). This means that a candidate connection set
must contain at least four events (i.e., three periods) in order
to be considered for periodicity analysis.

As the variance threshold increases, the percentage of
connection sets classified as periodic also increases. Figure 3
shows that the detection rate increases quickly when θvar < 1,
and then grows slowly until θvar = 10. When θvar > 10, the



Fig. 3. Sensitivity to variance threshold.

detection rate increases rapidly before leveling off again. The
rapid increase beyond θvar = 10 suggests that many non-
periodic connection sets are being classified as periodic (i.e.,
false positives).

To reduce false positives in our periodic traffic detection, we
used Figure 3 as a guide to select θvar = 0.5 as our arbitrary
variance threshold. For our data analysis, we set pmin = 10
seconds and pmax = 1, 036, 800 (12 days), again to ensure that
at least three full periods are observed. These settings are used
in all remaining analyses in the paper. Further rationale for
these settings, and additional experiments with other settings,
are provided in [16].

E. Baseline Model Results

Table II on the next page provides a statistical summary
of our empirical dataset. Logs are collected hourly, but we
analyze them at different granularities: hourly, daily, and
the full 7-week duration. At each granularity, we report the
number of connections observed, the number of candidate
connection sets (before pruning), and the number of instances
of periodic traffic.

Table II shows that the periodic traffic constitutes only
a tiny fraction of the aggregate network traffic. However,
these periodic signals provide surprisingly valuable insights
into network operations and malicious traffic activities, as
demonstrated throughout the rest of the paper.

Tradeoffs exist for periodicity detection at different time
granularities. Hourly logs are “cleaner”, with less churn in the
set of active users/devices in the network. However, it is not
possible to detect long-period or long-duration periodic traffic
in a short log. Furthermore, many of the same periodicities
appear in successive log files of short duration, and should
not be counted multiple times. We thus need to merge the
results from individual logs to produce longer periodic traffic
instances without duplicates.

As the log duration is increased, however, periodicities can
become obfuscated, due to transient connectivity, mobility of
users, diurnal effects, network outages, data collection issues,
or other disruptions to the traffic patterns. Fortunately, the

analysis of a long-duration log enables the identification of
intermittent periodicities, which can be detected, merged, and
aggregated appropriately.

The final row of Table II shows that our overall analysis
more than doubles the number of periodicities detected, com-
pared to analyzing a single composite log (first row of data in
Table II). The rest of the paper focuses on these 244K instances
of periodic traffic, representing 2,462,352 connection events.

V. PERIODIC TRAFFIC TAXONOMY

This section provides a taxonomical classification of peri-
odic traffic, as illustrated in Figure 4.

A. Network Traffic Overview

The aggregate traffic from which we extract periodic traffic
is complex. As Table II shows, periodic traffic is only a
tiny component of the overall network traffic at any given
timescale. Thus, identifying this traffic is challenging.

Table III provides an overview of the traffic composition on
our edge network, For this summary, we provide a breakdown
of the aggregate traffic at the protocol and protocol/port level.
At the protocol level, Table III shows that the aggregate traffic
(on a connection basis) is 73% TCP, 23% UDP, and 4% ICMP.
At the port level, we classify ports as system, user, or dynamic
ports, based on the IANA3 definition. Table III shows that
most of the aggregate traffic uses system ports, for well-known
protocols such as HTTP, HTTPS, DNS, or ICMP.

TABLE III
PROTOCOL/PORT ANALYSIS FOR NETWORK TRAFFIC.

Protocol Port All Traffic Periodic Traffic
System 55% 22%

TCP User 17% 18%
Dynamic 1% 5%
System 17% 3%

UDP User 5% 42%
Dynamic 1% 4%

ICMP - 4% 6%

Our goal is to understand the periodic traffic ecosystem. To
this end, we examined all periodic traffic originating from or
directed to our network, doing so at both the protocol and
protocol/port levels.

Table III shows that the protocol breakdown for periodic
traffic differs significantly from that for the aggregate traffic.
UDP is the most prevalent protocol for periodic traffic (49%),
followed by TCP (45%) and ICMP (6%).

We investigated why the periodic traffic differed so greatly
from the aggregate traffic. We found that some hosts were in-
volved in anomalously many periodic communications. These
hosts were generally specific services, such as the Akamai
CDN node on our campus network, and P2P applications,
including P2P botnets. These services produced much of the
periodic traffic in the user/dynamic port ranges, and primarily

3https://www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.xhtml



TABLE II
STATISTICAL SUMMARY OF EMPIRICAL DATASET AND PERIODIC TRAFFIC DETECTED.

Time Num Total Connections Candidate Connection Sets Periodic Traffic Connections Periodic Traffic Instances
Granularity Logs Min Mean Max Min Mean Max Min Mean Max Min Mean Max

7 Weeks 1 15.2 B 5.1 B 1,312,157 115,655
1 Day 48 225 M 317 M 405 M 99 M 125 M 163 M 25,905 51,299 206,345 2,046 5,019 7,614
1 Hour 1,152 6 M 13.2 M 27 M 3.7 M 5.9 M 13 M 321 2,137 52,642 37 187 988
Merged 1 15.2 B 18 B 2,462,352 244,569

Aggregate Tra�c

Non-Periodic

Irregular
244,337 (99.9%)

Outbound
169,187 (69.2%)

Alive
151,187 (61.8%)

P2P
67,157

(27.5%)

Non-P2P
84,030

(34.3%)

Periodic

Dead
18,000 (7.4%)

P2P
10,893

(4.5%)

Non-P2P
7,107

(2.9%)

Inbound
75,150 (30.7%)

Alive
21,669 (8.8%)

P2P
4,217

(1.7%)

Non-P2P
17,452

(7.1%)

Dead
53,481 (21.9%)

P2P
34,143

(14%)

Non-P2P
19,338

(7.9%)

Regular
232 (0.1%)

Outbound
88 (0.04%)

Alive
83 (0.03%)

P2P
0

(0%)

Non-P2P
83

(0.03%)

Dead
5 (0.01%)

P2P
0

(0%)

Non-P2P
5

(0.01%)

Inbound
144 (0.06%)

Alive
99 (0.04%)

P2P
0

(0%)

Non-P2P
99

(0.04%)

Dead
45 (0.02%)

P2P
0

(0%)

Non-P2P
45

(0.02%)

Fig. 4. Taxonomical classification of periodic traffic detected on our campus edge network.

used UDP. Their presence skews the protocol distribution for
periodic traffic.

The protocol/port combinations for periodic traffic also
differ substantially from those for the aggregate traffic. TCP
periodic traffic was almost evenly-divided between system
ports (22% of all periodic traffic) and user ports (18%), unlike
the aggregate TCP traffic, which was mostly on system ports
(55%). As in the aggregate traffic, TCP/80 and TCP/443
are the most popular well-known protocol/port combinations,
representing 95% of all periodic traffic in the system port
range. Port usage in the user range varies widely, though ports
such as TCP/5223 (Apple’s Push Notification Service) show
lots of periodic traffic.

For UDP, periodic traffic is more prevalent in the user port
range than the system port range. This differs greatly from
the aggregate traffic, and suggests that relatively little of this
periodic traffic is for well-known services. UDP periodic traffic
is widely distributed across user/dynamic ports, but within the
system port range, it is heavily concentrated on 53 (DNS), 137
(NetBIOS), and 443 (HTTPS over UDP).

Inspection of the ICMP traffic indicates that it is more
prominent and varied in the periodic traffic than in the aggre-
gate traffic. For ICMP, ‘Echo Reply’ and ‘Host Unreachable’
messages are both prominent in the periodic traffic. To a
lesser extent, but still noticable, are ICMP ‘Port Unreachable’
messages. The volume and variety of this ICMP periodic traffic
indicates a lot of scanning activities.

The main observation from this initial overview is that the
composition of periodic traffic is quite different from that of
the aggregate traffic. In particular, there are notable differences
in the relative usage of TCP and UDP, and in the types of

ports being used. As will be shown later, these differences
arise primarily from the presence of P2P applications.

B. Regularity

In the simplest case, periodic behavior is persistent and con-
tinuous, occurring at regular intervals for the entire duration of
the log. We define periodic traffic to be regular if its lifespan
is within two periods of the length of the observational period.
The lifespan is defined as the elapsed time between the first
and last observed connection attempts.

Two examples of regular periodic traffic in our edge network
are NTP and our Akamai CDN node. NTP creates an easily
identifiable periodic pattern, as seen earlier in Figure 2(a). Our
Akamai node exhibits periodic traffic using multiple protocols.
For example, it uses ICMP echo queries to ping other Akamai
nodes periodically to monitor Internet latencies, which are later
reported to a central server.

In our 7-week log, we observed 232 instances of regular
periodic traffic, with 228 of these having protocol/port combi-
nations in the system port range. The most prominent of these
was NTP, representing 112 instances of periodic traffic. Other
well-known protocols were HTTP, HTTPS, DNS, NetBIOS,
SSDP, and SNMP.

HTTP periodicity can be classified into two broad cat-
egories: update checks, and data posts. Update checks are
probes that periodically check for updates from a server. On
our edge network, we found many types of update checks (e.g.,
software, operating systems, anti-virus, databases, security cer-
tificates). Conversely, data posts involve periodically uploading
data to a server. We observed several different examples of
data posts, including backups and logging.



The remaining regular periodic traffic instances were pri-
marily from scanning activities. In our dataset, 8 out of 11
DNS periodicities, 8 out of 17 NetBIOS instances, and all of
the SSDP and SNMP periodic traffic came from Internet-scale
scanning projects at Ruhr University [32].

Regular periodic traffic tends to have long periods with intu-
itive values, such as daily (49%) and weekly (41%) patterns.
The longest period observed was 8.8 days; this was a Web
proxy validating a cached object.

Contrary to the simple regularity discussed above, we found
that the vast majority of periodic traffic is transient and
irregular. This irregularity happens since computers can have
transient Internet connectivity, change IP addresses, be re-
booted, or be shut off overnight. In addition, some applications
only generate periodic traffic part of the time.

Transient periodicities are to be expected on a modern edge
network, which services a myriad of devices and purposes.
The majority of the devices on our network are for personal
use, and are therefore more likely to follow usage patterns that
produce irregular periodic traffic. Thus, having many transient
periodicities on an edge network like ours is normal.

Network middleboxes, such as DHCP and NAT, can cause
irregular periodicities too. For example, a DHCP server dy-
namically assigns IP addresses, so that at a different point
in the logs, the same laptop may have a different IP, and
the previously observed IP may represent a different laptop.
This DHCP churn is quite common and has several underlying
causes [27]. As another example, a NAT box relays/forwards
traffic from multiple other hosts on a network. This causes
irregularity since the traffic from multiple hosts becomes
interleaved on connection records with a common IP address.

The main insight from this regularity analysis is that the vast
majority of periodic traffic is irregular. As shown in Figure 4,
only 0.1% of the periodic traffic satisfied the strict definition
of regularity, while 99.9% was irregular in some way. The
reasons for this include user behavior, network middleboxes,
and P2P applications.

C. Directionality

Although periodic traffic often involves two-way communi-
cation, it implicitly has a directional orientation, which we
define relative to our edge network. Specifically, outbound
periodic traffic originates from a host on our edge network,
while inbound ones originate from outside our network.

Outbound periodic traffic exhibits protocol/port usage sim-
ilar to the aggregate traffic in Table III. This traffic typically
corresponds to well-known services, with system port usage
concentrated on ports 80 and 443. TCP periodic traffic on
user/dynamic ports was generated almost entirely by our
Akamai node and a Sality P2P botnet that we discovered
on our network due to its use of periodic communications.
UDP periodic traffic on system ports was primarily NTP and
Google’s QUIC protocol (UDP/443). For user/dynamic ports,
the UDP instances were mostly P2P, gaming, and Akamai-
related traffic.

The protocol/port usage of inbound periodic traffic differs
significantly from that for outbound. The few TCP period-
icities on system ports were primarily for University-related
services, however there was also periodic scanning for Telnet-
capable hosts. TCP periodic traffic on user/dynamic ports
used a wide range of ports, and were primarily related to
external services interacting with hosts on our edge network.
UDP periodic traffic in the system port range was primarily
NTP-related. However, there was also significant DNS and
NetBIOS traffic. The periodicities in the dynamic port range
were mostly related to P2P traffic and our Akamai node.
ICMP periodicities were more prominent in inbound traffic
than outbound traffic. These instances included our Akamai
node, regular echo requests, and scanning.

Figure 4 shows that regular periodic traffic was mostly
inbound. These instances primarily involved services offered
by hosts on our edge network. By contrast, irregular periodic
traffic was mostly outbound. This traffic was generated primar-
ily by end-user applications, in particular P2P applications.
Many of the services and peers that end-user applications
interact with reside outside our edge network.

The key observation here is that there are structural differ-
ences in the composition of inbound periodic traffic and out-
bound periodic traffic. These differences include the volume
and variety of periodic traffic, as well as the protocol and port
usage. The underlying reasons for the differences include the
network services being offered, the applications being used,
and user behavior on the network.

D. Liveness

Another attribute of periodic traffic is whether the con-
nection attempt elicits a response or not. The terms unidi-
rectional (one-way) or bidirectional (two-way) periodic traffic
are sometimes used to describe this characteristic. However,
we instead use the term liveness to refer to this attribute, to
avoid confusion with directionality. If the originator receives
zero bytes from the responder over the lifespan of the periodic
traffic, we classify it as dead. Otherwise, we consider it alive.
Liveness is an important feature, since Internet traffic that has
no recipient is often useful for identifying odd behaviors [6].

Figure 4 shows that the majority of the periodic traffic
that we observed showed liveness. Such traffic is clearly most
useful when both hosts are aware that the other is receiving
the probe. These instances have protocol/port usage patterns
similar to the overall pattern, particularly for TCP.

Despite most periodic traffic instances being alive, we
observed surprisingly many dead instances: 71,531 (29%).
Many of these, particularly on the system ports for TCP and
UDP, were scanning hosts for specific services, such as HTTP,
HTTPS, Telnet, NetBIOS, DNS, NTP, and SNMP. Those in
the user/dynamic port ranges were typically related to specific
services or applications. Almost all of the TCP periodic traffic
in this range was generated by service vendors attempting
to communicate with hosts on our network. A very small
proportion was related to P2P applications. Conversely, the
dead UDP instances in this range were almost entirely related



to P2P traffic. There were also a few scanning for specific
(vulnerable) services like SSDP.

The prevalence of dead (unidirectional) periodic traffic is
related to churn. If a host establishes communication with a
vendor/peer, and later changes IP address or sleeps, it can no
longer respond. These dead instances continue for some time
until the vendor/peer decides to halt communication with the
inactive host.

Many ICMP instances in this category were related to host/-
port scanning. A total of 6,269 dead ICMP periodicities had
error return codes of either host, network, or port unreachable.
The rest had return codes indicating that the ICMP request was
prohibited.

As shown in Figure 4, the majority of unidirectional pe-
riodic instances are inbound. This is intuitive based on the
observations above. The larger proportion of dead, inbound,
irregular periodicities is also sensible considering that many
are related to P2P applications and service vendors. However,
there is one notable anomaly. Our Akamai node produced
many unidirectional periodic instances over ports 80, 443,
11640, and 12347. In total, this single host produced 5,877
dead outbound instances of periodic traffic. This behavior
likely indicates some stale configuration information.

In summary, the main observation from this analysis is that
most periodic traffic (about 70%) involves bidirectional com-
munication, while the rest (about 30%) is only unidirectional.
The latter category results primarily from scanning activities,
churn in P2P applications, and possibly stale network config-
uration information.

E. P2P Traffic

P2P applications generated lots of periodic traffic, so we
used P2P as another attribute for classification. We used
heuristic techniques to identify P2P applications, and packet
payload captures to confirm our hypotheses [16].

Some hosts on our network were involved in a lot of
periodic traffic. A few of these hosts (such as our Akamai
node) were identified as specific legitimate services. However,
many internal hosts were exchanging probes with a globally
distributed set of hosts. Further investigation demonstrated that
many of these were related to P2P applications. We were
able to positively identify four P2P applications: BitTorrent,
PPStream, the ZeroAccess botnet, and a strain of the Sal-
ity P2P botnet. We first noticed the latter (Sality) due to
its periodic communications, presumably to share neighbor
information, or other tasks related to maintaining the P2P
network. We then identified that it was related to Sality by
comparing its behavior to Sality’s known behavior [11], and
checking IP addresses in the Virus Tracker4 database. These
P2P applications were primarily on Bring Your Own Device
(BYOD) subnets.

A deeper study of these P2P applications, and their periodic
traffic, led to two observations. First, the identified P2P
applications tend to use a specific port or limited range of

4https://virustracker.net/

ports for this traffic. Second, these P2P applications generated
traffic with specific periods, or a small set of periods. Other
researchers have had similar findings [1], [5], [33].

In our empirical dataset, P2P applications accounted for
48% of all periodic traffic instances detected. In most P2P
applications, each peer generates a periodic probe to each other
known peer. For a large P2P network, the total number of
probes is high. P2P probes are often conducted using UDP on
user/dynamic ports. This is why UDP is the most frequently-
observed transport protocol for periodic traffic, especially on
user/dynamic ports.

Figure 4 shows the prevalence of P2P periodic traffic. P2P
probes were all irregular, and were prominent in both inbound
and outbound traffic. In both cases, P2P traffic made up the
majority of the unidirectional periodicities. This is likely due
to churn in P2P networks, when peers go offline without
informing the network. Even if they did inform the network,
there would be a delay for that information to propagate.

For non-P2P applications, the periodic traffic had similar
protocol/port usage as the aggregate traffic. The majority of
the periodicities are TCP-based and concentrated in the system
port range, though the user/dynamic ports are used more often
than in the aggregate traffic. UDP is less prevalent in non-P2P
periodic traffic, and no ICMP periodicities were P2P-related.

The key takeaway from this analysis is that approximately
half of the periodic traffic on our campus edge network is from
P2P applications. These applications are diverse and ubiqui-
tous, typically using UDP for their periodic communication,
and doing so using well-defined periods and a limited range
of ports.

VI. PERIODIC TRAFFIC CHARACTERIZATION

In this section, we present an in-depth characterization of
the periodic traffic that we detected. We focus on structural
properties, temporal characteristics, subnet-related differences,
vendor-specific properties, and visual characteristics.

A. Structural Characteristics

To identify clusters in the periodic traffic, we produced
scatterplots of the period and port. Figure 5 presents these
results, using logarithmic scales on both axes. Figure 5(a)
shows the scatterplot for all periodic traffic, while Figure 5(b)
shows the results for non-P2P periodic traffic. Blue denotes
TCP traffic, and red denotes UDP. Individual points are drawn
with low opacity, thus the more opaque an area is, the more
instances of periodic traffic it represents.

Figure 5 shows three different types of visual clustering:
points, horizontal bands, and vertical bands.

Points represent specific services that generate periodic
traffic using a specific port. Darker points are formed when
many instances share the same period and port number. For
instance, the point for UDP/12350 with a period of 9 minutes
is for Skype5, while the point for TCP/5223 with a 15-minute
period represents Apple’s Push Notification Service.

5Skype is transitioning from a classic P2P design to a centralized Microsoft
Azure service [37]. Both appear in our logs. Skype can also use dynamic ports.



(a) All Periodic Traffic (b) Non-P2P Periodic Traffic
Fig. 5. Period/port scatterplots for periodic traffic. Red is for UDP, while blue is for TCP. Darker points represent greater intensity of periodic traffic.

Horizontal bands indicate specific services that use a range
of different ports. Different applications use different port
ranges, so the length of horizontal bands can vary. Since
the ports vary, these applications typically use ports in the
user/dynamic port range. As a result, the horizontal bands tend
to appear on higher-numbered ports, as seen in Figure 5.

These horizontal bands arise from specific network appli-
cations. This becomes apparent when comparing Figure 5(a)
and (b). In Figure 5(a), there are multiple horizontal bands for
(red) UDP periodic traffic. These horizontal bands diminish in
Figure 5(b), when P2P applications are removed. Horizontal
bands are not exclusive to P2P applications, though. In Fig-
ure 5(b), for example, there is a clear horizontal band across
TCP ports 45,000-65,000 with a period of 9 minutes. This
band represents periodic traffic generated by Google Hangouts.

Vertical bands indicate commonly used ports, but not spe-
cific applications. For example, vertical bands appear at ports
80 (HTTP), 123 (NTP), 443 (HTTPS), and 1900 (SSDP).
Inspection of the periodic traffic within these bands reveals
that they represent several distinct applications. For example,
inspection of the HTTP logs showed that many different
applications generated periodic traffic on these ports, and those
with different periods were unrelated to one another.

In Figure 5(b), the three vertical bands for port numbers
beyond 10,000 were generated by the Akamai node on our
edge network. These instances were all directed to other
Akamai nodes, and are used for internal testing and reporting.

B. Temporal Characteristics

Periodic traffic has two salient temporal attributes: period
(time between successive connections) and lifespan (time
between the first and last connections).

Figure 6 shows CDFs of the period and the lifespan for
the periodic traffic that we observed. Figure 6(a) includes all
periodic traffic, while Figure 6(b) excludes P2P traffic. The
upper line (blue) is for the period. The lower line (green) is
for the lifespans. Both are measured in seconds. Note that the
horizontal axis is log scale, and that the vertical dashed lines
denote one minute, one hour, and one day periods.

The observed periods span a wide range, with the shortest
being 10 seconds (recall Table I), and the longest being 8.8
days. Despite this large range, periods are concentrated at the
lower end of the distribution, with periods up to 1 minute
representing 40% of all instances, and periods under one
hour comprising 97%. One-minute periods were common,
especially for P2P applications. The most frequent longer
periods were 15, 30, 50, and 60 minutes. Periods longer than
one day were quite rare (< 0.1%).

The lifespans for periodic traffic also tend to be short, but
have a broad range. The shortest was only 30 seconds, based
on our parameter settings in Table I, and the longest was 47.9
days. About 6% have a lifespan under 1 minute, and 71% have
a lifespan under one hour. Lifespans vary more widely than
periods, but there is a significant peak around 10 minutes for
P2P. About 30% of the lifespans exceed one hour.

From this analysis, we conclude that “typical” periodic
traffic has short periods and lifespans. Short lifespans can be
due to the applications, or reflect normal end-user behavior.
End-users tend to start and stop applications, relocate, or shut
down their devices, particularly in a BYOD environment. This
behavior contributes to the short(er) lifespans.

C. Subnet-based Analysis

Figure 7 shows a breakdown of the periodic traffic observed
on several different subnets within our campus network. We
selected the five busiest managed subnets from our department
(based on connections), the five busiest wireless BYOD sub-
nets, and the five busiest wired BYOD subnets for comparison.
Figure 7(a) is for outbound periodic traffic, while Figure 7(b)
is for inbound periodic traffic. On each graph, the subnet
numbers are anonymized, but are in the same position in each
graph for comparison.

Figure 7 shows several differences in the periodic traffic
observed in managed and unmanaged (BYOD) subnets.

The managed portions of the network produce relativity
few instances of outbound periodic traffic. Those that do
exhibit periodic traffic differ depending on what the subnet
is used for. Subnet 1 houses key infrastructure servers such as



(a) All Periodic Traffic (b) Non-P2P Periodic Traffic
Fig. 6. CDFs of periods and lifespans for periodic traffic.

(a) Outbound Periodic Traffic

(b) Inbound Periodic Traffic
Fig. 7. Subnet-based analysis of periodic traffic.

DNS and Web servers, and produces only a few instances of
periodic traffic, all of which are on system ports. Subnet 2 has
periodic traffic directed primarily toward managed services,
while subnet 3 has periodic traffic mainly related to games
and end-user applications. Subnet 5 contains a NAT device
that accounts for all periodic traffic on this subnet. It forwards
traffic from end-user devices, and thus manifests a significant
amount of periodic traffic for end-user applications, including
P2P. Thus, this subnet is a hybrid of a managed and BYOD
subnet.

The unmanaged subnets tend to have many more instances
of outbound periodic traffic. This traffic is primarily UDP-
based, however TCP also has a significant presence. The UDP
instances are primarily on the user port range, reflecting P2P
applications. However, there is also lots of gaming-related pe-
riodic traffic. The TCP periodic traffic in the system port range
uses ports 80 and 443 almost exclusively. This periodic traffic

is directed primarily to software vendors, managed (cloud)
services, Web pages, CDNs, and various service providers.
Those in the user port range are composed primarily of P2P
traffic, however there are also lots of periodic traffic instances
with Apple, Skype, and managed service providers. The few
ICMP periodicities represent innocuous echo requests.

The inbound periodic traffic differs depending on the pur-
pose of the managed portions of the network. Though subnet
1 produced the least outbound periodic traffic, Figure 7(b)
shows that it receives the most inbound periodic traffic. The
TCP periodic traffic is directed to Web servers and a Linux
mirror site for OS updates. The UDP periodic traffic is mostly
NTP-related, with a few being DNS-related. Subnet 2 receives
periodic traffic from various service providers. The periodic
traffic received by subnet 3 is primarily P2P traffic directed
to a specific host. The inbound periodic traffic for subnet 5 is
related to the NAT devices, and has a similar composition to
the outgoing periodic traffic. The periodicities in ICMP traffic
on managed subnets are mostly ICMP echo requests, however
there are also lots of port unreachable messages.

On the unmanaged (BYOD) subnets, outbound periodic
traffic dominates the inbound periodic traffic. However, the
composition of each is similar, with both mostly composed
of UDP traffic. The UDP periodic traffic is almost all related
to P2P applications. A small portion is related to (persistent)
scanning that was attempting to locate NetBIOS-capable hosts.
Unlike the outbound periodic traffic, there were very few
instances of TCP periodic traffic. The TCP periodic traffic was
mostly generated by software vendors and managed services,
although there is little usage of ports 80 and 443. Most of the
TCP periodic traffic occurred on user/dynamic ports.

D. Service-Related Characteristics

Many of the periodicities observed in non-P2P traffic were
related to well-known service vendors. For this analysis, we
selected five representative service/software vendors for in-
depth analysis. These vendors represent the four major cate-
gories observed: software vendors, service vendors, managed
hosting vendors, and CDNs.

Figure 8 shows that each vendor has a distinct protocol/port
usage profile. These differences reflect the diversity of services
provided by each vendor.



Fig. 8. Vendor-based analysis of periodic traffic.

Microsoft is a software/service vendor for which the peri-
odic traffic uses TCP almost exclusively. Periodic traffic in the
system port range used only ports 80, 443, and 993. Instances
over ports 80 and 443 were related to Skype, Web application
hosting, software updates, and user information collection,
while those over TCP/993 were for Microsoft’s Outlook e-
mail service. They used periodic traffic on user/dynamic ports
to communicate with hosts on our network every 60 seconds.

Google’s periodic traffic relates to specific services. In-
stances in the system port range for both TCP and UDP
were concentrated on port 443 and directed towards Google’s
servers. Periodic TCP traffic in the user/dynamic port range
was directed towards our network, and provided Google’s
services (e.g., Hangouts) to hosts on our network.

Amazon uses periodic traffic for managed services. This
traffic primarily used TCP ports 80 and 443. Inspection of the
HTTP logs showed that these instances were not related to
Amazon’s hosting services themselves. Rather, the periodic-
ities were generated by the wide variety of applications and
Web pages that were being hosted on the servers. There were
also some ICMP echo requests directed to Amazon’s servers.

The Akamai periodic traffic had several distinct patterns.
The ICMP instances were other Akamai hosts making ICMP
echo requests to the Akamai node, and vice versa. Periodic
traffic in the user/dynamic port ranges for both UDP and TCP
were used by Akamai for internal testing and reporting. TCP
periodicities in the system port range were all conducted over
ports 80 and 443. Many of those over port 80 were related
to the Akamai Netsession Interface6, which periodically posts
logs to Akamai servers.

Valve is a multimedia vendor that provides video games
and game-related services. The periodic traffic was produced
by Valve’s Steam video game client. These instances occur
with a period of 1.5-2 minutes on UDP/27,000-UDP/27,037.
These port numbers7 are used by Steam for game client traffic,
game match-making, and in-home streaming.

6https://www.akamai.com/us/en/products/mediadelivery/
netsession-interface-faq.jsp

7https://support.steampowered.com/kb article.php?ref=8571-GLVN-8711

E. Visual Characteristics

Visualization can play a key role in the interpretation of
periodic traffic. To demonstrate this, we used Gephi8 to create
four examples of node-link diagrams in Figure 9. Each node
represents a host that either sends or receives periodic traffic.
Hosts internal to our network are light grey, while external
hosts are color-coded according to the protocol/port used by
the periodic traffic. Edges are the same color as the source,
thus outbound instances have grey edges, and inbound ones
have colored edges.

Figure 9(a) illustrates the results for our Akamai node.
This node exchanges periodic traffic with many external hosts,
using TCP (blue), UDP (red), and ICMP (yellow). These
instances form a dense mesh of primarily outbound edges.

P2P applications tend to form complex networks, as shown
in Figure 9(b) for BitTorrent. Each internal host has its own
cluster of external peers, but some nodes provide periodic
traffic between clusters.

Figure 9(c) illustrates the periodic traffic of the Sality
P2P botnet that we identified on our network. The internal
hosts of this P2P network generate periodic traffic directed
to many external hosts. Furthermore, many of these external
hosts receive probes from multiple internal hosts, thus creating
the complex relationships shown. These networks are quite
distinctive [36], and are easily identifiable.

Figure 9(d) shows an example of the ZeroAccess botnet. In
this example, the internal host is interacting with external peers
that are not shared with any other internal hosts. As a result,
the diagram resembles that for an internal service. However,
the use of UDP on non-system ports, and the primarily
inbound edges, make it visually distinct from Figure 9(a).

VII. CONCLUSIONS

In this paper, we provide a modeling methodology for the
detection, analysis, and characterization of periodic network
traffic. Our approach can be used to assess the state of well-
known network services (e.g., NTP, DNS, CDN), and also
detect P2P, gaming, cloud, scanning, and botnet traffic flows.
Despite its simplicity, our SQL-based method is surprisingly
powerful, offering deep insights into the characteristics of
periodic network traffic.

The main conclusions from our work are as follows. First,
periodic traffic is pervasive in modern network applications,
including gaming, CDN, P2P, cloud-based services, and mali-
cious traffic. Second, periodic traffic is diverse in its structural
properties, and often very transient in its existence. Third,
P2P applications account for about half of the periodic traffic
detected in our empirical study. We hope that our taxonomical
classification facilitates better understanding of the periodic
traffic ecosystem on a modern campus edge network.

There are several high-level implications from our work.
First, system administrators of managed infrastructure need to
know if any of their (critical) systems are exchanging periodic
traffic with unexpected places. Such communication patterns

8https://gephi.org/
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Fig. 9. Example visualizations of periodic network traffic.

may indicate compromised systems, or potential vulnerabili-
ties. Second, security analysts need to know if there are any
periodic probes from external organizations (e.g., on a security
blacklist) that are scanning their network. Such traffic could
indicate network reconnaissance prior to a potential attack.
Finally, we need to make periodic traffic information accessi-
ble and useful for network operators. For these purposes, we
regularly run our periodic traffic analysis scripts on a daily
basis, and report suspicious/malicious activities to our network
security team.

Future work is needed to further enhance our understanding
of periodic traffic. First, the irregularities in periodic traffic
warrant further investigation, since they dominate the periodic
traffic ecosystem, and are not detected easily. These irregu-
larities arise from network middleboxes (e.g., DHCP, NAT,
wireless APs) and user behavior (e.g., diverse applications
and devices, mobility, transient network connectivity), and are
challenging to analyze. Second, better methods are needed for
interpreting periodic traffic. It is often assumed that periodic
behavior is inherently suspicious [7], [13], [19], or that manual
review of this traffic is feasible [18], [22]. Our work indicates
that interpreting periodic traffic is not simple, and better auto-
mated methods are required. Finally, obfuscation of periodic
traffic is the next logical step for malware designers. We need
robust detection techniques for malicious traffic once these
periodic signals vanish.
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