Autoscaling Effects in Speed Scaling Systems

Maryam Elahi

Carey Williamson

Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4
{bmelahi, carey} @cpsc.ucalgary.ca

Abstract—In this paper, we study the dynamics of coupled
speed scaling systems, in which service rate is a function of
system occupancy. We focus on both Processor Sharing (PS)
and Shortest Remaining Processing Time (SRPT) as scheduling
disciplines, and study their speed scaling dynamics under heavy
load. Using a combination of Markov chain analysis and discrete-
event simulation, we identify several important properties of
speed scaling systems, which we call the autoscaling effect, the
« effect, and the saturation effect. We also identify different
overload regimes for PS and SRPT. In particular, SRPT exhibits
a starvation effect that differs from the compensation effect
of PS. These dynamics lead to different stability, fairness, and
robustness properties for PS and SRPT under heavy load.

Index Terms—Speed scaling; PS; SRPT; Markov chain; anal-
ysis; simulation

I. INTRODUCTION

Dynamic speed scaling systems provide an inherent tradeoff
between response time and energy consumption in computer
systems [2]. For example, running the CPU faster improves job
response time, but also consumes more energy, because of the
higher voltage levels and clock frequencies required. Finding
a suitable balance between these two opposing metrics is the
main focus in the design of speed scaling systems.

Within a speed scaling system, the two most important de-
sign decisions are the speed scaling function and the scheduler.
First, the speed scaling function determines at what speed jobs
are to be executed. This function adjusts the aggregate service
rate dynamically based on the offered load. One approach is
job-count-based speed scaling, wherein the service rate is a
function of the instantaneous system occupancy [3], [9], [23].
This approach optimizes the linear combination of response
time and energy consumption in the worst case [23]. With
this design, the highest CPU rates are used when the system
backlog is the largest, and the lowest CPU rates are used
when the load is light. Second, the scheduler determines which
job is executed next. Classic examples include First-Come-
First-Serve (FCFS), Processor Sharing (PS), and Shortest-
Remaining-Processing-Time (SRPT). These scheduling algo-
rithms have different properties with respect to queueing delay,
response time, and fairness.

In this paper, we focus on the interplay between the speed
scaling function and the scheduler. We consider coupled speed
scaling systems, wherein the system speed is a direct function
of system occupancy (i.e., job-count-based). We restrict our
attention to PS and SRPT as two representative examples of
schedulers. PS dynamically shares the CPU amongst all active
jobs in a time-slicing fashion. This scheduling algorithm is
attractive because of its fairness, and its ability to approximate

the time-sharing and multiplexing characteristics of practical
computer systems. SRPT devotes service to the smallest
remaining job in the system. Although SRPT can be unfair,
this scheduling algorithm is attractive because it optimizes the
average response time over any fixed-speed sample path [24].

The primary motivation for our work is a desire to better
understand the autoscaling properties of speed scaling systems.
As one example, consider a subtle but important property that
we call the compensation effect. Given an arbitrary set of jobs
in a speed scaling system, suppose that SRPT makes a “good”
decision to complete a small job more quickly than PS does.
By doing so, however, SRPT reduces the system occupancy
and service rate relative to PS. This might be good for short-
term energy consumption, but might be a disadvantage in the
longer term, since it may take SRPT longer to complete the
remaining jobs. We want to understand this subtle tradeoff in
speed scaling systems.

A novel aspect of our study is considering speed scaling
systems under “overload”. By overload, we mean sustained
offered loads that far exceed the capacity of single-speed
systems. If there is no limit to the maximum service rate,
then a speed scaling system will automatically adjust (i.e.,
autoscale) its service rate to accommodate whatever load
is presented to it. We use mathematical analysis (for PS)
and discrete-event simulation (for PS and SRPT) to study
the dynamics of speed scaling systems under a wide range
of offered loads, and establish invariant properties of such
systems that can be used to validate our results.

The main observations and insights that emerge from our
work are the following. First, PS is amenable to Markov chain
analysis, and has elegant system occupancy distributions in
speed scaling systems, consistent with classical works [13],
[14]. Second, SRPT is not amenable to Markov chain analysis,
since it is not a symmetric queueing discipline, and it violates
the memory-less property. Nonetheless, it has interesting sys-
tem occupancy dynamics that can be understood reasonably
well. Third, the “overload” regimes for PS and SRPT are
different, which lead to different behavioural properties under
very high load. Among these properties are the autoscaling
effect, the saturation effect, the compensation effect, and the
starvation effect. Our work identifies and illustrates these
dynamics in speed scaling systems.

The rest of this paper is organized as follows. Section II
reviews prior literature on speed scaling systems. Section III
presents our system model. Section IV presents our analytical
results. Section V presents simulation results. Finally, Sec-
tion VI concludes the paper.

II. BACKGROUND AND RELATED WORK

The literature on scheduling policies dates back to the early
days of computer systems, in which single-speed systems
were the norm. The most common metric used to evaluate
scheduling policies is mean response time (also known as
sojourn time). In single-speed systems, SRPT is optimal for
this metric [18]. SRPT is a preemptive policy that always
selects for service the pending job in the system with the
least remaining work. Although SRPT minimizes the mean
response time, it is rarely used in practice, since it needs
advance knowledge of job sizes. Furthermore, it can be unfair;
large jobs may starve if small jobs have precedence.

The unfairness of SRPT has been studied extensively [4],
[11], [22]. Under heavy load, SRPT may be unfair to certain
jobs [4]. However, in many cases, SRPT can provide lower
expected response times than PS for all job sizes [4], [22].
Under heavy load, the jobs that receive unfair treatment are
intermediate-size jobs, and not the largest jobs [12]. In single-
speed systems, all scheduling policies asymptotically converge
to the same slowdown value for very large jobs [12]. It is
not known if this property holds in speed scaling systems.
In single-speed systems, one nice property of SRPT under
(transient) overload is that it minimizes the number of jobs
that are starved [19].

Prior research on speed scaling systems appears in two
different research communities: theory and systems. The the-
oretical work typically focuses on formal mathematical proofs
of the properties of speed scaling systems (e.g., optimality,
fairness, worst-case bounds, competitive analysis) under some
simplifying assumptions (e.g., unbounded service rates, known
job sizes, idealized schedulers, zero context-switching costs).
Systems research typically aims at “good” rather than optimal
solutions, based on practical considerations [8], [9] (e.g.,
limited range of discrete system speeds, unknown job sizes,
threshold-based control, leakage power, realistic schedulers,
non-zero context-switching costs). In this literature review, we
focus primarily on the theoretical work, which provides the
relevant background context for our paper.

In speed scaling systems, there are many tradeoffs between
service rate, response time, and energy consumption. Yao
et al. [26] conducted one of the first analytical studies of
dynamic speed scaling systems, assuming that jobs have
explicit deadlines, and the service rate is unbounded. Bansal
et al. [5] considered an alternative approach that minimizes
system response time, within a fixed energy budget. Some
work focuses on energy-efficient algorithms [2], while others
focus on finding the optimal fixed rate at which to serve jobs
in a system with dynamically-settable speeds [10], [23], [25].

Several studies indicate that energy-proportional speed scal-
ing is nearly optimal [3], [7]. In this model, the power
consumption P(s) of the system depends only on the speed s,
which itself depends on the number of jobs in the system (i.e.,
P(s) = n). Bansal, Chan, and Pruhs [7] showed that SRPT
with the speed scaling function P~(n + 1) is 3-competitive
for an arbitrary power function P. Andrew et al. [3] showed

TABLE I
MODEL NOTATION

[Symbol] Description
A Mean job arrival rate
“w Service rate
n Service rate in state n
E[X] Average size (work) for each job
p Offered load p = A/u = AE[X]
Pn Steady-state probability of n jobs in the system
U System utilization U = 1 — pg
n Number of jobs
f(n) CPU speed as a function of number of jobs
t Time in seconds
n(t) Number of jobs in system at time ¢
s(t) CPU speed at time ¢
P(s) Power consumption when running at speed s
« Exponent in power consumption function P(s) = s%

that the optimal policy is SRPT with a job-count-based speed
scaling function of the form s = P~1(nf3).

III. SYSTEM MODEL

We consider a single-server system with dynamically ad-
justable service rates. Service rates are changed only at job
arrival and departure points (i.e. when the system occupancy
changes). There is no cost incurred for changing the service
rate, and no limit on the maximum possible service rate.

The workload presented to the server is a sequence of tuples
specifying job arrival times and sizes. We assume that the
arrival process is Poisson. That is, the interarrival times are
exponentially distributed and independent, with mean arrival
rate \. The size (work) of a job represents the time it takes
to complete the job when the service rate = 1. We assume
that job sizes are exponentially distributed and independent.
Unless stated otherwise, we assume that the mean job size is
E[X] = 1. Table I summarizes our model notation.

In this paper, we consider two specific work-conserving
scheduling policies, namely PS and SRPT. We assume that the
schedulers know all job sizes upon arrival. A job in execution
may be preempted and later resumed without any context-
switching overhead.

A speed scaling function, s(t), specifies the speed of the
system at time ¢. Let P(s) denote the power required to run
at speed s. For coupled speed scaling, the speed at time ¢
depends on the number of jobs in the system, denoted by
n(t), and thus is influenced by the scheduling policy. The best
known policy uses the speed function s(t) = P~ (n(t)3) [3].
In this paper, we assume 3 = 1. We also consider P(s) = s%,
which is commonly used in the literature to model CPU power
consumption. Therefore, in the coupled speed scaling model,
we use s(t) = ¢/n(t) = n(t)"/, where a > 1.

IV. ANALYTICAL RESULTS
In this section, we present our analytical results for speed
scaling under PS scheduling, which treats all jobs equally.
A. Markov Chain Formulation

The starting point for our analysis is the classic M/M/oco
queueing model [14]. In this model, a new server is always

available for each arriving customer, so there is no waiting
time, and the response time depends only on the service
requirements of each job. In our speed scaling context, there
is only a single server, so there can be waiting times for
jobs (depending on the service discipline), but the service
rate scales with occupancy, and can be much higher than that
associated with a single dedicated server. The analysis of these
two systems is identical [14].

For the M/M/oo model, the system occupancy follows a
Poisson distribution [14]. Specifically, p, = %e(*/\/ 0y
and the mean system occupancy is N = % = p. Like most
queueing models, the analysis implicitly assumes a First Come
First Serve queue, in which only the front job receives service,
while the other jobs (if any) wait. However, the steady-state
occupancy of the system is the same under PS [13], [23].

B. Autoscaling Effect

In single-speed systems, there is a fundamental ergodicity
requirement for a queueing system to be stable. In an M/M/1
queue, for example, the mean queue size is given by ¢ = i"p,
where p = A/p represents the relative offered load to the
system, or equivalently the system utilization U = p =1 —py
(i.e., the proportion of time that the server is busy with at least
one job). Clearly, the expression for ¢ is only well-defined for
p < 1, which is the ergodicity requirement for the queue.
Specifically, the average arrival rate A must not exceed the
average service rate u, if the queue is to be stable.

In dynamic speed scaling systems, we are no longer re-
stricted to p < 1 as the operating regime, since the system
automatically scales its service rate to accommodate the of-
fered load. The only technical requirement is that p < oo [14].

If there is no upper bound on the maximum service rate, and
infinite storage capacity in the queue for jobs, then the steady-
state average service speed 5§ must match the offered load (i.e.,
5§ = p). This is an invariant property of any stable speed scaling
system. We refer to this property as the autoscaling effect.

An important subtlety in speed scaling systems is that the
notions of offered load p and system utilization U differ [25].
At sufficiently high load, the system rarely empties, and U —
1. However, the offered load p at which this occurs is typically
p > 1, and sometimes p >> 1, depending on the parameters
of the speed scaling system.

Despite this difference, there is still a fundamental ergodic-
ity property underlying the dynamics of speed scaling systems.
Specifically, the steady-state occupancy has a central tendency
toward the lowest-occupancy state in which the service rate
n is at least as large as the (fixed) arrival rate A. This
property can be used to analytically calculate the mean system
occupancy in steady state. Much like the M/M/oco model, the
system occupancy for linear speed scaling follows a Poisson
distribution with mean N = \/u = p.

C. Effect of o

We next consider the dynamics of a system with sub-linear
speed scaling. Specifically, we consider running the system
at speed s = n'/* when the system occupancy is n jobs.

Fig. 1. Markov Chain Model for Dynamic Speed Scaling System

We consider 1 < o < 3, which is the relevant range of
interest for Dynamic Voltage and Frequency Scaling (DVFS)
on commercial processors [20], [25].

The parameter « determines the set of distinct speeds
available in our speed scaling system. For the special case
o = 1, the speeds scale linearly with occupancy, much like
the M/M/oo queue, which provides a natural validation point
for our model. For o = 2, speeds scale less than linearly with
system occupancy, following the “square root speed scaling”
approach recommended in the literature (i.e., the system speed
when there are n jobs in the system is /n = n'/?). For
o = 3, speeds scale even more slowly with growing system
occupancy: the system speed when there are n jobs in the
system is ¢/n = n'/3). In the limiting case of o = oo, the
speeds scale so slowly that they are effectively constant (i.e.,
single-speed system). This provides another validation point
for our model.

The Markov chain for our generalized speed scaling system
is shown in Figure 1. Analysis of this chain produces steady-
state probabilities p,, that are analogous to those for the
M/M/oo chain, except for the effect of the 1/« exponent on
all of the service rates.

The general expression for the steady-state probabilities is:

n—1

1 A A"
Pn = Po : o, — Do o

RO TR GO

and the idle probability py has the following form:
B 1
1+37 %

From these steady-state probabilities, it is straightforward (but
tedious) to obtain the mean occupancy (and higher moments)
of the system. We currently do so numerically, since we don’t
have a closed form for the general case. For the special case
o = 2, analysis leads to a bound E[N] < v/2p? + pop. This
bound becomes tight as p increases.

The impact of the parameter v on system occupancy is
illustrated in Figure 2. The graphs on the left-hand side
are for PS, while those on the right are for SRPT, which
will be discussed later in Section V-B. Figure 2(a) is for
p = A =1, while Figures 2(b) and (c) show p = A = 2 and
p = A = 3, respectively. In each graph, the horizontal axis
shows the system occupancy, while the vertical axis shows
the probability of observing that occupancy. The three lines
on the graph show the analytical results for system occupancy
for « = 1, a = 2, and a = 3. The points show simulation
results for the same settings. The latter results come from
two different simulators: a Markov chain simulation with the
same assumptions as the analytical model (i.e., memory-less

Po

property for service times), and a discrete-event simulation
of a speed scaling system (which is job-count based, and
remembers the remaining size of any pre-empted job). All
simulation results agree extremely well with the analytical
model, for both PS and FCFS scheduling.

The primary effect of increasing « is to shift the occupancy
distribution to the right. This makes sense intuitively, since
the slower service rates lead to a larger queue of jobs in
the system. However, the larger backlog of jobs leads to
an increased service rate, which eventually stabilizes the
system. The system stabilizes around a mean occupancy of
N = p°. This is another invariant property of any stable
coupled speed scaling system under sufficiently heavy offered
load, as confirmed by the results for PS and SRPT in Figure 2.

A secondary effect of the parameter « is the flattening and
spreading of the (formerly Poisson) distribution for system
occupancy. While the structure of the distribution is similar to
Poisson, the state probabilities degenerate, and the Coefficient
of Variation (CoV) is greater than that for a Poisson distribu-
tion. The particular relationship observed here is Var = aN.
In the limiting case of @ = oo, this distribution degenerates
to an equal but negligible probability for all states, indicating
an unstable (infinite) queue.

A tertiary effect of « is the decline in py, which is the
probability of having an empty system. Since U = 1 — py,
this is simply another manifestation of the saturation effect.

D. Insights and Observations
The following insights emerge from our analysis:

« In stable speed scaling systems, 5§ = p.
o PS with a@ = 1 behaves like the M/M/oco queue.
 Increasing « alters the Poisson structure of PS.
« In stable speed scaling systems, limpﬁoopﬂa =1
V. SIMULATION RESULTS
In this section, we use discrete-event simulation to study PS
and SRPT scheduling in coupled speed scaling systems.

A. Saturation Effect

In our first experiment, we use our simulator to explore the
busy period structure in speed scaling systems. As the load
offered to a speed scaling system is increased, the number of
busy periods diminishes until there is a single massive busy
period that includes all jobs. We refer to this phenomenon as
the saturation effect, since U — 1.

Despite the saturation of the utilization U, the speed scaling
system still remains stable, even if the load is further increased.
In particular, limpﬁm% = 1. The probability of the system
returning to the empty state becomes very small, but the
system 1is still recurrent.

A key observation from simulation is that the saturation
point for SRPT is different than under PS scheduling. In
particular, the saturation point for SRPT is lower than that for
PS. One implication of this observation is that there exist load
levels at which SRPT is beyond saturation, while PS is not.
We explore one consequence of this in the next subsection.

B. Starvation Effect

In single-speed systems, SRPT is optimal, since it mini-
mizes the mean waiting time and the mean response time.
However, SRPT can sometimes be unfair, since it favours short
jobs over long jobs. While there is often fear that long jobs
will starve, this is not true in a stable system that has adequate
capacity to (eventually) serve all the jobs. Under overload,
however, starvation can occur [19].

In a speed scaling system, the effects of SRPT scheduling
are subtle and interesting. By serving the smallest jobs to
completion, SRPT improves response time, and minimizes
system occupancy. However, by reducing system occupancy,
SRPT inherently reduces the service rate, perhaps leading to
worse response times for the remaining jobs. Understanding
this tradeoff is one of the key motivations for our work.

The right-hand side of Figure 2 shows simulation results for
the system occupancy in an SRPT system. In each graph, the
simulation results for SRPT are shown using points (connected
with lines for easier visual reference), while the other lines in
the background show the PS analytical results (for comparison
purposes). These simulation results lead to three specific
observations about SRPT-based speed scaling systems.

The first observation is that the system occupancy distribu-
tion under SRPT has much lower variance than the PS system.
That is, there is a much greater central tendency toward the
mean occupancy N = p® than under PS. This observation is
particularly evident in Figure 2(e) and Figure 2(f), although it
also holds for Figure 2(d), as confirmed in Tables II to IV. In
fact, for «« = 1, the variance is even less than for a Poisson
distribution. Intuitively, this phenomenon makes sense: if there
are many jobs in the system, then it is likely that some of
them are small, and will depart soon, since the speed is high.
Conversely, if the system occupancy is low, then the speed is
low, and departures will be sluggish, especially for large jobs.

The sluggishness leads to our second observation, which
we call the starvation effect. Under SRPT-based speed scaling,
large jobs that enter the system tend to remain a very long time
before they receive service. This is another manifestation of
SRPT’s unfairness, which is magnified under speed scaling [3].
Furthermore, when they do receive service, it is at widely
different rates (i.e., very small when they are still large, but
faster and faster as they become smaller). This phenomenon
leads to higher variability of response time for SRPT compared
to PS (see Table IV, for example).

The third observation from simulation is that the sizes of
the starved jobs tend to increase over time. This observation is
not evident from the graphs or the table, but does emerge from
post-processing and visualization of our simulation output.
Loosely stated, a large job is more likely to get service only
when an even larger job arrives. While the number of large
jobs in the queue remains finite (since the queue itself is
finite), their average size tends to grow over time. The latter
observation suggests a difference between the notions of “job
stability” and “work stability” under SRPT scheduling in a
speed scaling system, when U — 1. We are investigating the

Probability

Steady-State Probabilities for System Occupancy (Lambda = 1)

04 r — 04 T T T
alpha = 1 (sim) alpha=1(sim) ©
035 " alpha = 1 (anal) ------ 035 alpha = 1 (anal) ------
alpha = 1 (FCFS sim) alpha = 1 (FCFS sim)
03 alpha = 1 (PS sim) 03 alpha = 1 (PS sim)
alpha = 2 (sim) . alpha=2 (sim) x
0.25 alpha = 2 (anal) 025 1 % alpha =2 (anal) ———

alpha = 2 (FCFS sim)
alpha = 2 (PS sim)
alpha = 3 (sim)

alpha = 3 (anal)
alpha = 3 (FCFS sim)
alpha = 3 (PS sim)

System Occupancy
(@) PS (\ = 1)

Steady-State Probabilities for System Occupancy (Lambda = 1)

0.5 alpha = 1 (SRPT sim) —e—

alpha = 2 (SRPT sim)

alpha =3 (SRPT sim)
alpha = 1 (PS anal) ------
alpha =2 (PS anal) ——
alpha = 3 (PS anal)

0.4

03 K7L

Probability

teady-S: P ilities for System Occugp

(Lambda = 2)

alpha = 2 (FCFS sim)
alpha =2 (PS sim)
alpha = 3 (sim)

alpha = 3 (anal)
alpha = 3 (FCFS sim)
alpha =3 (PS sim)

LN . 23y
0 5 10 15 20 25 30

System Occupancy

(b) PS (A = 2)

ady-State Probabilities for System Occup

(Lambda = 2)

alpha = | (SRPT sim) —e—

alpha = 2 (SRPT sim) =

alpha = 3 (SRPT sim)
alpha = 1 (PS anal)
alpha = 2 (PS anal) ———
alpha = 3 (PS anal)

04

ies for System Occupancy (Lambda = 3)

0.35
0.3

025
%
02 it
D
015 [°

Probability

Talpha=1(sim) | ©
alpha =1 (anal) ------
alpha=2 (sim) x
alpha =2 (anal) -
alpha = 3 (sim)
alpha =3 (anal)

01 f ﬁ e
£
o.n(s) xxx Q‘“’.,_ Bm;w:@,mmm%%%‘m“
0 10 20 30 40 50 60
System Occupancy
© PS (A = 3)

ancy (Lambda = 3)

ies for System Occ

0.5

0.4

03

alpha = 1 (SRPT sim) —e—

alpha = 2 (SRPT sim) =

alpha = 3 (SRPT sim)
alpha = 1 (PS anal)
alpha = 2 (PS anal) -~
alpha = 3 (PS anal)

Probability
Probability

Probability

4 6 8 10 0 5 10

o
©

System Occupancy

(d) SRPT (\ = 1)
Fig. 2.

details of this phenomenon as part of our ongoing work.

C. Compensation Effect

In single-speed systems, it is well-known that SRPT pro-
vides better response time than PS, and the differences be-
tween the two can be very large, depending on system load
and job size distribution. However, in speed scaling systems,
the differences between the two schedulers is not as dramatic,
because of the compensation effect. To elaborate, if SRPT
makes a decision that completes a specific job sooner than
under PS, the side effect of this decision is to reduce the
system rate for the next job in service. In other words, PS
now has an advantage over SRPT in terms of service rate.

Tables II to IV present results exploring the tradeoffs
between PS and SRPT, including the compensation effect.
Table II is for « = 1, while Table III and Table IV are for
o = 2 and a = 3, respectively. In each table, we present
results for mean and variance of response time, mean and
variance of occupancy, and system utilization, with the offered
load ranging from p=A=1to p=A=3.

The results in these tables show elegant autoscaling proper-
ties for PS scheduling. For the special case of linear speed
scaling (o« = 1) in Table II, the mean occupancy has a
Poisson distribution with mean N = p, and the mean response
time matches the expected exponential distribution with mean
E[X] = 1. For @« = 2 in Table III, the mean occupancy
grows with load according to our bound, and the variance of
occupancy increases as well. These effects translate into higher
mean and variance for response time. Similar observations
apply for o = 3 in Table IV, as the PS system approaches
its saturation point.

System Occupancy

(e) SRPT (\ = 2)
System Occupancy Results for PS and SRPT Scheduling (PS analysis/simulation; SRPT simulation)

15 20 25 30 0 10 20 30 40 50 60

System Occupancy

(f) SRPT (\ = 3)

TABLE II
SIMULATION RESULTS FOR PS AND SRPT (a = 1)

Scheduling | Load Response Time Occupancy System
Policy A Mean | Var Mean [Var Util. U
1 1.005 1.016 1.005 | 1.003 0.634

PS 2 1.005 1.016 2.010 | 2.006 0.867

3 1.005 1.016 3.014 | 3.014 0.952

1 1.005 | 2.281 1.005 | 0.621 0.734

SRPT 2 1.005 | 6.208 2.010 | 0.922 0.974
3 1.005 | 21.123 |[3.016 | 1.222 || 0.9996

The results for SRPT in these tables are also interesting.
For linear speed scaling (Table II), the mean occupancy and
mean response time match those for PS. However, the variance
of occupancy is much lower than for PS, and the variance of
response time much higher. The other notable difference is the
relative system utilization, which is much higher than under
PS. In Table III for o = 2, the response time advantages of
SRPT are evident, but the advantage is relatively modest, due
to the compensation effect. The mean system occupancy is
slightly lower than under PS, as is the variance. However, as
the system utilization approaches saturation, the variance of
response time grows dramatically. For « = 3 in Table IV,
similar observations apply. At saturation, the mean occupancy
approaches N = p® as expected, and the variance of occu-
pancy is much lower than under PS. The mean response time
is still slightly better than PS, but not by much. Furthermore,
the variance of response time becomes unwieldly, reflecting
the starvation effect.

TABLE III
SIMULATION RESULTS FOR PS AND SRPT (a = 2)

Scheduling | Load Response Time Occupancy System
Policy A Mean [Var Mean | Var Util. U
1 1.537 2.615 1.537 | 2.192 0.714
PS 2 2.297 5.836 4595 | 8.159 0.958
3 3.203 11.001 9.611 | 18.342 0.997
1 1.341 5.579 1.341 1.020 0.796
SRPT 2 2.103 | 147.859 || 4208 | 2.611 0.998
3 2906 | 16,760.8 || 9.175 | 4.7742 1.0
TABLE IV
SIMULATION RESULTS FOR PS AND SRPT (a = 3)
Scheduling | Load Response Time Occupancy System
Policy A Mean [Var Mean | Var util. U
1 2.013 5.039 2.013 3.650 0.759
PS 2 4.600 25.053 9.201 24.522 0.989
3 9.474 1 97.044 28.267 | 81.642 || 0.99994
1 1.602 10.233 1.602 1.393 0.831
SRPT 2 4.127 | 5,779.02 8.262 5971 1.0
3 8.967 | 856,635 27302 | 16.717 1.0

D. Insights and Observations

Several insights emerge from our simulation results:

e Under heavy load, busy periods coalesce, and U — 1.
o The overload regimes for PS and SRPT differ.
o SRPT suffers from starvation under very high load.

VI. CONCLUSIONS

In this paper, we have used mathematical analysis and
simulation to explore the autoscaling properties of dynamic
CPU speed scaling systems. Our study has focused primarily
on the interplay between schedulers and speed scalers. We
have assumed coupled (i.e., job-count-based) speed scaling,
with PS and SRPT as representative schedulers.

The main conclusions from our work are several. First,
we show that PS is amenable to Markov chain analysis, and
has elegant system occupancy distributions in speed scaling
systems. Insights from this model establish several invariant
properties that are useful for the study of SRPT, which is
not directly amenable to Markov chain analysis. Second,
our simulation results show that SRPT has interesting speed
scaling dynamics, with system occupancy distributions that are
distinctly different than PS. These dynamics produce different
response time and fairness properties. Third, the “overload”
regimes for PS and SRPT are different, which lead to different
behavioural properties under very high load. Among these
properties are the autoscaling effect, the saturation effect, the
compensation effect, and the starvation effect. Our work iden-
tifies and illustrates these dynamics in speed scaling systems.

ACKNOWLEDGEMENTS

Financial support for this work was provided by Canada’a
Natural Sciences and Engineering Research Council (NSERC).
The authors thank Philipp Woelfel for many discussions about
speed scaling, and Jennifer Williamson for building a Java-
based visualization tool for our simulator.

REFERENCES

[1] S. Albers, F. Mueller, and S. Schmelzer, “Speed Scaling on Parallel Pro-
cessors”, Proceedings of ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 289-298, 2007.

S. Albers, “Energy-Efficient Algorithms”, Communications of the ACM,

Vol. 53, No. 5, pp. 86-96, May 2010.

[3] L. Andrew, M. Lin, and A. Wierman, “Optimality, Fairness, and Ro-

bustness in Speed Scaling Designs”, Proceedings of ACM SIGMETRICS,

pp. 37-48, June 2010.

N. Bansal and M. Harchol-Balter, “Analysis of SRPT Scheduling: In-

vestigating Unfairness”, Proceedings of ACM SIGMETRICS Conference,

Cambridge, MA, pp. 279-290, June 2001.

N. Bansal, T. Kimbrel, and K. Pruhs, “Speed Scaling to Manage Energy

and Temperature”, Journal of the ACM, Vol. 54, 2007.

[6] N. Bansal, K. Pruhs, and C. Stein, “Speed Scaling for Weighted Flow

Time”, Proceedings of ACM-SIAM Symposium on Discrete Algorithms,

2007.

N. Bansal, H. Chan, and K. Pruhs, “Speed Scaling with an Arbitrary

Power Function”, Proceedings of ACM-SIAM Symposium on Discrete

Algorithms, 2009.

[8] M. Dell’Amico, D. Carra, M. Pastorelli, and P. Michiardi, “Revisiting
Size-based Scheduling with Estimated Job Sizes”, Proceedings of IEEE
MASCOTS, Paris, France, pp. 411-420, September 2014.

[9] M. Dell’ Amico, D. Carra, M. Pastorelli, and P. Michiardi, “PSBS: Practi-
cal Size-Based Scheduling”, to appear, IEEE Transactions on Computers,
2016.

[10] J. George and J. Harrison, “Dynamic Control of a Queue with Ad-
justable Service Rate”, Operations Research, Vol. 49, No. 5, pp. 720-731,
September-October 2001.

[11] M. Gong and C. Williamson, “Revisiting Unfairness in Web Server
Scheduling”, Computer Networks, Vol. 50, pp. 2183-2203, 2006.

[12] M. Harchol-Balter, K. Sigman, and A. Wierman, “Asymptotic Conver-
gence of Scheduling Policies with Respect to Slowdown”, Proceedings
of IFIP Performance 2002, Rome, Italy, pp. 241-256, September 2002.

[13] F. Kelly, Reversibility and Stochastic Networks, Wiley, 1979.

[14] L. Kleinrock, Queueing Systems, Volume 1: Theory, Wiley, 1975.

[15] D. Lu, H. Shen, and P. Dinda, “Size-based Scheduling Policies with In-
accurate Scheduling Information”, Proceedings of IEEE/ACM MASCOTS,
Volendam, Netherlands, pp. 31-38, October 2004.

[16] I. Rai, G. Urvoy-Keller, and E. Biersack, “Analysis of LAS Scheduling
for Job Size Distributions with High Variance”, Proceedings of ACM
SIGMETRICS Conference, San Diego, CA, pp. 218-238, June 2003.

[17] D. Raz, H. Levy, and B. Avi-Itzhak, “RAQFM: A Resource Allocation
Queueing Fairness Measure”, Proceedings of ACM SIGMETRICS Con-
ference, New York, NY, June 2004.

[18] L. Schrage, “A Proof of the Optimality of the Shortest Remaining
Processing Time Discipline”, Operations Research, Vol. 16, pp. 678-690,
1968.

[19] B. Schroeder and M. Harchol-Balter, “Web Servers Under Overload:
How Scheduling Can Help”, ACM Transactions on Internet Technology,
Vol. 6, No. 1, pp. 20-52, February 2006.

[20] D. Snowdon, E. Le Sueur, S. Petters, and G. Heiser, “Koala: A Platform
for OS-level Power Management”, Proceedings of ACM EuroSys, pp. 289-
302, 2009.

[21] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for Re-
duced CPU Energy”, Proceedings of USENIX Operating System Design
and Implementation (OSDI), 1994.

[22] A. Wierman and M. Harchol-Balter, “Classifying Scheduling Policies
with Respect to Unfairness in an M/GI/1”, Proceedings of ACM SIG-
METRICS Conference, San Diego, CA, pp. 238-249, June 2003.

[23] A. Wierman, L. Andrew, and A. Tang, “Power-Aware Speed Scaling
in Processor Sharing Systems”, Proceedings of IEEE INFOCOM, April
2009.

[24] A. Wierman, L. Andrew, and M. Lin, “Speed Scaling: An Algorithmic
Perspective”, book chapter in Handbook of Energy-Aware and Green
Computing, CRC Press, 2012.

[25] A. Wierman, L. Andrew, and A. Tang, “Power-Aware Speed Scaling
in Processor Sharing Systems: Optimality and Robustness”, Performance
Evaluation, Vol. 69, pp. 601-622, 2012.

[26] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for Reduced
CPU Energy”, Proceedings of ACM Foundations of Computer Systems
(FOCS), pp. 374-382, 1995.

[2

[

[4

—

[5

—_

[7

—

