Experimental Calibration and Validation
of a Speed Scaling Simulator

Arsham Skrenes

Carey Williamson

Department of Computer Science
University of Calgary
Calgary, Alberta, Canada T2N 1N4
{arsham.skrenes, carey} @ucalgary.ca

Abstract—In this paper, we use experimental measurements
to calibrate and validate a discrete-event simulator for dynamic
speed scaling systems. The experimental implementation work
is carried out in an Ubuntu Linux environment using a quad-
core 2.3 GHz Intel i7 processor with the Ivy Bridge micro-
architecture. Our implementation provides fine-grain user-level
control of process execution, and uses the Running-Average
Power Limit (RAPL) Machine Specific Registers (MSRs) to track
energy usage. Through careful micro-benchmarking experiments,
we determine the power consumption for each of the 12 discrete
speeds supported by the processor, while also quantifying the
costs of context switches and CPU speed changes. Finally, we use
our suitably-parameterized speed scaling simulator to evaluate
three different CPU speed scaling algorithms from the literature
on simple batch workloads. To the best of our knowledge, our
paper provides the first direct comparison of these speed scaling
strategies with realistic system costs.

Index Terms—Speed scaling; energy consumption; experimen-
tal implementation; measurement; simulation validation

I. INTRODUCTION

In dynamic CPU speed scaling systems, the speed at which
the processor executes is adjusted over time based on the ambi-
ent workload demand. If no jobs are present, the processor can
enter a rest state (e.g., “sleep”, “idle”, or “gated off”) to reduce
power consumption. In the presence of one job, the processor
can run at a modest baseline speed. If the number of active
jobs increases, the processor speed can be increased, perhaps
to some maximum rate, to dissipate the backlog quickly.

Speed scaling strategies produce interesting tradeoffs be-
tween response time, fairness, and energy consumption. In
essence, the design goal is to run the system just fast enough
to complete all of the work in a timely fashion, but no faster.
By doing so, the energy consumption for completing the
workload is as low as possible. Such energy-efficient speed
scaling strategies are relevant in at least two different contexts,
namely hand-held mobile systems where battery power is a
scarce resource, and commercial datacenters where the energy
consumption of thousands of processors can affect operating
costs [15], as well as the carbon footprint.

Modern processors provide rich functionality to support
dynamic speed scaling. For example, the Intel i7 processor
used in our work has 12 distinct execution speeds, 4 different
sleep modes, 6 idle modes, and an API for selecting amongst 5
different speed scaling governors. Furthermore, the Intel Sandy
Bridge and newer microarchitectures have specific hardware

support for measuring energy consumption via the Running
Average Power Limit (RAPL) Machine Specific Registers
(MSR) [11]. However, most operating systems, including
Linux, still use relatively simple algorithms for speed scaling
(e.g., threshold approaches based on CPU utilization, with only
a few distinct coarse-grain levels).

In the published literature, there is a dichotomy between
the speed scaling results for the systems and theory research
communities. The theoretical work tends to provide elegant
results on the optimality and efficiency of speed scaling
algorithms [1], [2], [4], [5], [6], [8], [25], albeit under many as-
sumptions (e.g., weighted cost functions for delay and energy
consumption; known job sizes; energy-proportional operation;
job-count-based speed scaling; continuous and unbounded
speeds; zero cost for context switches, speed changes, or return
from sleep states). Simulation is sometimes used to augment
the evaluation of speed scaling systems, but the simulators
often have similar assumptions as the analytical work. In the
systems community, research tends to focus on Dynamic Volt-
age and Frequency Scaling (DVFES). In this context, practical
issues such as processor utilization, heat dissipation, and job
size variability are primary considerations [14], [16], [17],
[21], [24], while optimality is not.

Our work attempts to bridge between theory and systems,
by evaluating several speed scaling strategies under realistic
settings, using a calibrated and validated speed scaling sim-
ulator. Our objective is to provide an accurate comparison
and evaluation of speed scaling algorithms, when deployed
on modern processors. We do so by building an experimental
framework to collect fine-grain power measurements, which
are used to calibrate and validate a discrete-event simulator
for dynamic speed scaling systems. The simulator is then used
to study the response time and energy consumption of three
speed scaling policies from the literature.

There are three main contributions in this paper. First,
we describe a proof-of-concept implementation that supports
precise user-level control of speed scaling using the features
of the Intel i7 processor. Second, we use micro-benchmarking
to measure the actual system costs for context switches, speed
changes, and different operating modes on the i7 processor.
Third, we provide both experimental and simulation evaluation
of three different speed scaling strategies from the literature.
To the best of our knowledge, our results provide the first



“apples to apples” comparison of these speed scaling strategies
under realistic system settings.

The remainder of this paper is organized as follows. Sec-
tion II provides background context for our work and discusses
relevant prior work from the literature. Section III provides an
overview of our experimental framework for evaluating speed
scaling strategies, while Section IV presents implementation
details. Section V describes our experimental measurement
methodology and results, while Section VI presents our sim-
ulation results. Finally, Section VII concludes the paper.

II. RELATED WORK

In speed scaling systems, there are many tradeoffs between
service rate, response time, and energy consumption. These
issues have fostered research efforts in both the systems
community and the theory community.

One of the earliest systems papers on speed scaling was by
Weiser et al. [24]. In their work, they considered a diverse mix
of processes in a Unix system, and attempted to determine the
energy savings if the jobs were executed using different system
speeds. A subset of the same authors later contributed to one
of the seminal theoretical papers on speed scaling [26]. Their
paper proposed an optimal offline algorithm for speed scaling
(now known as YDS, based on the names of the authors), with
the objective of minimizing power consumption. They also
proposed a heuristic online algorithm for the same problem.
Both algorithms are deadline-based, and require knowledge of
job sizes and deadlines.

In the systems community, CPU speed scaling is often re-
ferred to as Dynamic Voltage and Frequency Scaling (DVES),
in which either the voltage or the clock frequency (or both)
of the processor are adjusted. Power consumption is usually a
quadratic (or cubic) function of the frequency used. In systems
work, many practical concerns arise regarding granularity of
control, the set of discrete speeds available, non-linear power
consumption effects, and unknown job characteristics [19],
[20], [21], [23], [24]. Practical speed scaling policies include
threshold-based control, Rush-to-Idle, gated on-off, and Intel’s
Turbo Boost technology [12].

In the theory community, speed scaling typically assumes
a continuous and unbounded range of available speeds, with
the choice of speed determined either by job deadlines [26] or
system occupancy [3], [6]. Albers et al. have done extensive
work on energy-efficient algorithms [1], [2]. Some of this work
optimizes the tradeoff between energy consumption and mean
response time [1]. Several studies on this metric suggest that
energy-proportional speed scaling is near optimal [3], [6]. An
alternative approach has focused on minimizing the response
time in systems, given a fixed energy budget [4], [5].

Andrew, Lin, and Wierman [3] formally consider the trade-
offs between response time, fairness, and energy consumption.
Their paper identifies algorithms that can optimize up to two of
these metrics, but not all three. For example, SRPT (Shortest
Remaining Processing Time) is optimal for response time [18],
but can be unfair, while PS (Processor Sharing) is always fair,
but suboptimal for both response time and energy [3], [8].

Decoupled speed scaling divorces speed selection from
system occupancy [8]. This violates the definition of “natural”
speed scaling in [3], since it can require speed changes at
arbitrary points in job execution, even if occupancy remains
the same. While decoupled speed scaling provides an elegant
theoretical model, it has not been implemented or evaluated in
a practical system. Our paper provides the first experimental
results for decoupled speed scaling in such a system.

III. SYSTEM OVERVIEW

This section describes the design and implementation of the
Profilo software tool that we developed. It provides user-
level control over process execution for micro-benchmarking
and collecting energy profile measurements.

A. Workload Specification

The workload input for the Profilo environment is spec-
ified using an external file. A user can specify a list of jobs
to be executed on the CPU using a workload file like this:

Job Work Speed
= 3 1
P2 7 5
P3 1 2
P2 8 3
P4 10 1

In this example, there are 4 different jobs. The first column
identifies the job (based on a process ID number), while the
second column identifies how much work the job needs to
perform, and the third column indicates the (arbitrary) speed
at which the CPU should run when doing that work. The file
is implicitly in timestamp order, and user-defined processes
are numbered consecutively from P1 to Pn, for some n. In
this particular example, job P1 runs first, and has 3 units of
work to complete at speed 1. The next job to begin execution
is job P2, which runs at speed 5 to complete 7 units of work.
It then yields the CPU to job P3, which does 1 unit of work
at speed 2. Then job P2 regains the CPU, and runs at speed 3
to finish 8 more units of work. Finally, job P4 does 10 units
of work at speed 1.

There are four subtle but important points in this example.
First, the order of job execution is completely specified in
the file, as are the job sizes and system speeds. There are no
scheduling decisions or speed scaling decisions for Profilo
to make; it simply needs to read in the file and execute the jobs
accordingly. Second, it is the user that constructs the file and
provides it to Profilo. As such, the user can create files with
arbitrary scheduling policies (e.g., FIFO, PS, SRPT, FSP [10]),
and arbitrary speed scaling strategies (e.g., static, coupled,
decoupled, random). In practice, these workload files can be
generated either by hand or using simulation tools. Third, the
system speeds are relative, not absolute. Specifically, we treat
the speed as an index that is normalized and mapped to one of
the actual speeds available on a given processor. To understand
this point, consider a trace file that contains only a single job
P1. It is ambiguous whether this job should be run at the



lowest available speed on the system (to minimize energy
consumption), or the highest available speed (to minimize
response time). Both interpretations are possible, and equally
valid. By inserting a dummy job PO into the trace file twice,
once with the minimum speed and once with the maximum
speed, we can disambiguate this scenario, and force P1 into
any desired choice of the available system speeds. If PO runs
for only the minimum possible time slice in our system (e.g.,
1 ms), its effect on the overall execution cost is negligible.
Finally, it is important to note that “work™ is expressed in
normalized “work units”, and not in time, since the execution
of 10 units of work could take different amounts of time,
depending on the speed used. (This is also the underlying
reason why there are no job arrival timestamps in the workload
file.) One of the parameters provided to Profilo specifies
the normalized work unit for any given run of the system.

In our system, we use a simple primality-testing algorithm
as the underlying compute task for work units. There are
several reasons for this choice. First, primality-testing is a
CPU-bound computation that is fully contained within the
processor package (e.g., core, cache). This feature means
that the Running Average Power Limit (RAPL) counters can
be used to accurately profile its energy consumption [12].
Second, primality-testing is easily implemented in kernel space
without the need for complicated mathematical operations
and/or floating point units. Third, it suitably utilizes the su-
perscalar and pipelined integer architecture, while reasonably
disrupting branch prediction [22]. Finally, primality-testing is
easily parameterized to generate jobs that range in duration
from microseconds to minutes.

This workload configuration framework is a key part of our
experimental platform for evaluating speed scaling strategies.
While this framework is simple, it is also very powerful and
flexible. The most difficult part is making the operating system
do exactly what Profilo wants. We discuss this issue next.

B. Software Prototype

The initial version of Profilo was written as a multi-
process user-space application to measure hardware context
switches. The simplicity of the initial version allowed the
application to be created quickly, and the different schedulers
and speed scaling algorithms to be tested to see if there were
statistically significant differences in timing and energy usage.

One of the challenges with a fully-user space application,
however, is that higher-priority processes and/or system in-
terrupts can preempt the user-defined processes at any time.
Furthermore, user processes can occupy the CPU for at most
a maximum duration, commonly called a time slice, quantum,
or jiffy. On most platforms, this duration is 10 ms. This
short time limit is problematic since some scheduling policies
(e.g., FCFS) may require uninterrupted execution for the entire
lifetime of a process.

To address these issues, kernel code is needed. An open-
source Linux operating system (Ubuntu 14.04 LTS) was cho-
sen because it has the necessary hardware support, including
an x86 Machine Specific Register (MSR) module.

Kernel space in Linux can be accessed either by modifying
the kernel or through the use of a kernel module. Modifying
the kernel requires gaining control to perform the profiling
operations on synthetic workloads. The modified kernel would
still need to interact with the user, run the specified workload,
and log the timing and energy consumption information. This
would be complex, and would require a rebuild and reboot
of the system every time the kernel is modified. Portability
could also become an issue, if the kernel was incompatible
with other Linux community patches.

In most cases, the kernel module approach is preferred,
since it is portable across different distributions and kernel
versions. Modules are also loadable and unloadable, without
the need to recompile the entire kernel or reboot the system,
which makes development significantly easier. Kernel code can
be exposed to a user-space API by using the sy sfs virtual file
system. Additional “interrupt disable” code is also required to
avoid unwanted context switches, since contemporary Linux
kernels provide multicore, pre-emptive scheduling.

The final version of Profilo was implemented as a hybrid
of the above. It uses a kernel module to perform uninterrupted
work, busy waiting, and sleeping, while performing high-
resolution timing and energy profiling. It exposes these fea-
tures through sys£s files, allowing a user-space application to
read the workload file, process jobs, collect data, and generate
output. Retaining as much as possible in user space makes
programming and debugging substantially easier.

IV. IMPLEMENTATION DETAILS

This section provides details on the implementation of
Profilo, as well as the specific hardware platform used.

A. Hardware Platform

Our experiments were conducted on a mid-2012 Apple
MacBook Pro Retina running Ubuntu Linux. The laptop was
equipped with a 2.3 GHz quad-core Intel Core i7-3615QM
Ivy Bridge processor with 32 KB of L1 instruction cache per
core, 32 KB of L1 data cache per core, 256 KB of L2 cache
per core, 6 MB of on-chip L3 shared cache, and 8 GB of 1600
MHz DDR3 RAM.

This processor has 12 discrete frequencies that range from
1200 MHz to 2300 MHz, in increments of 100 MHz. In addi-
tion to these 12 speeds, there is a special speed setting of 2301
MHz configurable on the processor. This speed enables Intel’s
patented “Turbo Boost” technology. This feature allows the
processor to clock one or more of its cores above its top-rated
frequency, if the power, current, and thermal limit are within
a specific range. For this particular processor, the maximum
Turbo Boost frequency is 3.3 GHz for a single active core, 3.2
GHz for two active cores, and 3.1 GHz for three or four active
cores. While all of our micro-benchmarking results include
the “2301 MHz” Turbo Boost mode, that mode is avoided
in our speed scaling experiments because it is not directly
controllable, even in Ring O of the hierarchical protection
domains.



On the Intel i7, there are a total of four Running Average
Power Limit (RAPL) domains. However, there are only three
available on any given CPU [12]. Enterprise-class (server) ma-
chines have PKG, PP0O, and DRAM domains, while consumer-
class (client) machines have PKG, PP0O, and PP1. The Intel
Core 17-3615QM CPU falls under the latter category. For
compatibility with both product categories, Profilo only
makes use of two domains, namely PPO (processor cores)
and PKG (entire CPU). While this captures most of the
dynamics in CPU-bound activities, the hardware platform has
more than just the CPU. For example, the package has an
integrated GPU (which we disable in order to get accurate
power measurements).

B. Kernel Space Implementation Details

Profilo is composed of two parts: the kernel module,
and the user-space application. This subsection focuses on the
kernel-space features.

The kernel module makes use of the sysfs virtual file
system provided by the Linux kernel [7]. This virtual file
system is intended to expose kernel subsystems, device drivers,
and two-way communication between kernel functionality and
user space. Despite the limited documentation for sysfs, this
approach is superior to the use of procfs, which is intended
only for process-related system information [13].

The Profilo kernel module uses four sysfs files:

e work_unit: this file defines a normalized unit of work
for a given run of Profilo. In our current imple-
mentation, the file indicates the number of consecutive
primes to find (starting from 2), using the primality
testing algorithm. This value determines the minimum
granularity for time slices in our experiments. Writing an
integer value to this file sets the number of primes, while
reading it returns the current value.

o do_work: this file configures the actual workload. To
use it, simply write the integer number of loops (replica-
tions) of work_unit to the file. Reading from the file
only displays the kernel module name and version.

e sleep_busy: writing an integer value (in microsec-
onds) to this file busy-loops the processor without
context-switches until that duration has elapsed. Subse-
quently reading the file reveals the formerly written value
as well as the actual time (in microseconds) that the
processor busy-waited (including the time it took for the
RAPL MSR’s to roll over).

e sleep_deep: writing an integer value (in microsec-
onds) to this file sleeps the processor for that duration.
Similar to sleep_busy, subsequently reading the file re-
veals the formerly written value as well as the actual time
that the processor slept, including any busy-wait period
waiting for the RAPL counters to roll over.

Both sleep_busy and sleep_deep make use of the
high-resolution timers supported in 64-bit Linux distributions.
Specifically, they use ktime_t, which is a 64-bit integer
expressed in nanoseconds. The sysfs files output their re-

spective time values (in microseconds), with three decimal
places to provide nanosecond precision.

There is one more requirement in order to support un-
interrupted process execution. Specifically, the hard lockup
detector, which is implemented with a non-maskable in-
terrupt (NMI), needs to be disabled. The Linux ker-
nel has both soft and hard lockup detection. Both
base their timeouts on a sysfs configurable value in
/proc/sys/kernel/watchdog_thresh, which is typ-
ically 10 seconds.

C. User Space Application

The user-space part of Profilo is a command-line utility
that begins by reading, translating, and sanity-checking the
input arguments and trace file provided to it. It then modifies
the operating system environment, and uses a compact version
of the trace file to control job execution on the CPU via the
sysfs interface. When execution is complete, it restores the
former operating system settings, and then reports the results.

Profilo always verifies that the input trace file is prop-
erly formatted, and semantically correct, before running any
experiment. The trace file is a CSV file with a header row and
three columns: Process Name, Work, and Speed. The name
uniquely identifies a process, which may appear more than
once in the job schedule. Work is a positive integer specifying
how many contiguous “work units” the process is to perform
during the run. Speed is a positive integer that is mapped to
a specific processor frequency before performing the work.

Profilo scans the entire file to determine the number
of processes, their sizes, and the set of speeds to be used.
This information is stored in two internal data structures, with
one for processes, and one for speeds. The process structure
records the name and index of each process in the trace, as
well as the remaining work for each (to determine when the
process leaves the system), and two variables that store the
start time and end time for each process. The time values are
post-processed to compute response times.

The speeds s; from the trace file are mapped to a CPU
frequency f; by the following formula:

(Si - Smin)

(smaac - smin)

fi = f’min + (fma;v - fmzn)

where f,,in is the processor’s slowest frequency, f,q. is the
fastest frequency, and S,,;, and S,,q, are the smallest and
largest speed values (respectively) in the entire trace file. This
equation normalizes the speeds in the trace file, as well as
those of the processor, and provides a mapping between them.
If the calculated frequency falls between two available discrete
frequencies, it is rounded up.

The MSR module is a kernel module that provides
an interface to x86 processors through the virtual file
/dev/cpu/0/msr. Reading and writing to the file requires
elevated (root) privileges, and is done in 8-byte (64-bit)
chunks. Profilo uses the low-level pread function with
the MSR file.



Profilo sets its system priority to be as high as possible.
Linux, like most operating systems, supports process priorities.
These priorities, called nice values, range from -20 to +19.
From a scheduling perspective, a nice value of -20 is the
highest priority, while +19 is the lowest priority. The default
priority for processes is a nice value of zero. In most Linux
distributions, setting a high-priority nice value requires root
privileges. Profilo invokes the setpriority system call
to set its nice value to -20.

Next, Profilo changes the current governor so that it
can control the processor’s frequency. The Linux kernel im-
plements dynamic speed scaling through a mechanism called
cpufreq. It provides a generic governor interface that allows
software-defined speed scaling policies to be implemented
when the processor is busy. The Linux kernel uses a separate
cpuidle subsystem when no work remains for the processor.

Most x86-based Linux distributions have five governors
from which to choose. These rely on sysfs files located
in /sys/devices/system/cpu/cpun/cpufreq/ (for
the nth logical processor). The existing governors in Ubuntu
Linux are: powersave (run at the lowest available fre-
quency); performance (run at the highest available
frequency); ondemand (dynamically change the proces-
sor’s frequency based on system load, with aggressive in-
creases and step-wise decreases); conservative (similar to
ondemand, but with step-wise increases); and userspace.

The userspace governor is the one that we use. It
changes the frequency of the processor based on input from
scaling_setspeed. This gives full control to user-space
processes (with root privileges) to set the frequency. We use
this mechanism in our user-defined speed scaling experiments.

V. EXPERIMENTAL METHODOLOGY AND RESULTS

This section describes the methodology used to run
Profilo, and how it collects and reports measurements.

A. Running Profilo

There are several steps before energy profiling takes
place. First, the sysfs file time_unit for the Profilo
kernel module needs to be set, based on the value that
was provided as a command-line argument to Profilo.
Once this is done, the do_work file can be written
as well. The final thing to do is to read the energy
and timing counters. The startRAPLmetric function
is invoked. This reads MSR_PPO_ENERGY_STATUS and
MSR_PKG_ENERGY_STATUS into a temporary variable, and
then continuously rereads the MSRs until both values roll over.
This is an unpredictable amount of time that can take up to a
millisecond [11], [23]. When it returns, the clock_gettime
function is invoked, with nanosecond resolution. The result is
stored in the first of two locally scoped time variables. The
second variable stores the end time for the profiling.

The profiling stage of Profilo involves a for-loop that
systematically traverses the list of tasks from the trace file.
The number of loop iterations is equal to the number of
lines in the trace file (minus the header). Each run begins by

checking the i sRunning array to see if the current process
is already running. If the process is not running, then the
startTime structure for the current process is initialized
with the clock_gettime function, before activating the
process.

To ensure repeatability of results, we disable all unneces-
sary functionality when running Profilo. In particular, we
disable the WiFi network interface, the monitor backlight, and
the GPU, while Profilo itself disables the three extra cores.
All of our results are from 10 replications of each experiment,
with the minimum result reported. With these approaches, all
of our measurement results are repeatable within 1% (except
in Turbo Boost mode).

B. Microbenchmarking Results

Table I and Figure 1 provide a summary of our power
measurement results for the 12 different speeds on the i7
processor, as well as the Turbo Boost mode and several of
the sleep/idle modes. In general, there is a strong linear rela-
tionship between power consumption and processor frequency,
though there is some evidence of non-linearities beyond 2200
MHz. In particular, the power consumption in the Turbo Boost
mode (“2301 MHz”, not shown on the graph) is extremely
high, approximately double that for 2300 MHz. The extended
C1 mode (CIE) for the processor has power consumption
similar to that when the main core (CPUO) is active (CO) at
1700 MHz, while the other cores are idle (C7). There are also
several low-power idle states that are frequency-independent.
For example, C7/C7 consumes only 10% of the PPO power
used at 1200 MHz for a single active core.

TABLE I
MICROBENCHMARKING RESULTS FOR SELECTED INTEL 17 STATES

[ Core 0 | Core 1-3 [ Frequency [ PPO (W) [ PKG (W) |

CO0 C7 2301 MHz 11.32 15.28
Cco C7 2300 MHz 5.26 9.14
Cco C7 2200 MHz 4.85 8.70
Cco C7 2100 MHz 4.66 8.50
Cco C7 2000 MHz 4.47 8.31
Cco C7 1900 MHz 4.29 8.11
Cco C7 1800 MHz 4.09 7.90
Cco C7 1700 MHz 391 7.72
Cco C7 1600 MHz 3.73 7.52
Cco C7 1500 MHz 3.57 7.35
Cco C7 1400 MHz 3.39 7.17
Cco C7 1300 MHz 3.20 6.98
COo C7 1200 MHz 3.02 6.78
CIE CIE - 3.90 7.63
C3 C3 - 1.83 4.67
Co C6 - 0.47 3.29
C7 C7 - 0.31 3.07

In addition to the 12 speed settings mentioned earlier, the
Intel 17 processor also has multiple sleep and idle states.
Table II provides a summary of the sleep states, as well as the
results from our measurements of their power consumption.

The sleep states were measured using our Profilo kernel
API, and validated using an external power consumption
meter. Specifically, we configured a long duration in each
of the sleep modes, and used the MSR values to calculate



Measured Power Consumption for Intel i7

—_
(=)

Power Consumption (Watts)
S = N W kA 1N d 0 O
o

1200 1400 1600 1800 2000 2200
CPU Frequency (Hertz)

2400

Fig. 1. Experimental Measurements for Power Consumption (Intel i7)

TABLE II
MICROBENCHMARKING RESULTS FOR SLEEP STATES ON INTEL 17

[ Mode | State | Description [ Power |

On GO0/SO | Normal operation | Varies

POS G1/S1 | Power on Suspend | 0.8 W
Suspend G1/S3 Suspend to RAM | 0.7 W
Hibernation | G1/S4 Suspend to Disk 03 W
Soft Off G2/S5 Soft off, no WiFi 03 W
Soft Off G2/S5 | Soft off, WiFion | 0.6 W
Off G3 Mechanical off 0.0 W

power consumption. These values were corroborated against
the (video recorded) readings from a Kill-A-Watt meter. The
observed values from each were in very close agreement.

Last but not least, we have used our software framework
to assess the costs of context switches and speed changes on
the Intel 17 architecture. For example, we measured context
switching costs by devising a simple PS schedule that alter-
nated execution between two processes P1 and P2, with no
speed changes on the processor. By varying the time quantum
that PS was using, we were able to estimate the context-
switching overhead. As another example, we measured the
overhead of speed changes by running a job schedule with
a single process P1, which alternates between two different
speeds in each successive interval of execution.

Our measurement results show that mode switches, con-
text switches, and speed switches all have different costs.
Mode switches (user-to-kernel or kernel-to-user) are the least
expensive, taking 64 to 123 nanoseconds, depending on the
processor frequency, and only 45 nanoseconds in Turbo Boost
mode. These have negligible energy costs, which are below
1 microJoule. Context switches between threads or between
processes are more expensive. These take 1.6 to 3.2 mi-
croseconds, depending on processor frequency, and only 1.1
microseconds in Turbo mode. The energy cost is about an
order of magnitude higher than for a mode switch. Changing
the processor frequency has a time cost that is about 1-2 times

that of a context switch, though it depends somewhat on the
target frequency chosen. Furthermore, the energy cost of a
speed switch is about four times that of a context switch.

VI. SIMULATION METHODOLOGY AND RESULTS

With the foregoing measurement results to calibrate our
simulator, the next step is to compare and evaluate the three
chosen speed scaling algorithms. For this purpose, we use
a discrete-event simulation model of this system [9], with
configurable scheduling policies and speed scaling strategies,
and adequate instrumentation to record system occupancy,
execution speeds, process schedules, and job response times.

A. Speed Scaling Strategies

For our simulation experiments, we use three different speed
scaling strategies from the literature: PS, decoupled speed
scaling, and YDS. These approaches are all fundamentally
different, illustrating the generality and flexibility of our
experimental framework.

We use Processor Sharing (PS) as the baseline for compari-
son of speed scaling strategies. By definition, PS is fair, since
it provides an equal share of processing capacity to each job in
the system. However, it is neither efficient nor optimal. That is,
there are known approaches that outperform PS with respect
to response time, energy consumption, or even both [8].

Our PS approach uses job-count-based speed scaling, in
which the CPU speed is adjusted dynamically based on the
instantaneous number of jobs in the system. On the i7, the
maximum speed (2300 MHz) is only about twice that of the
lowest speed (1200 MHz), and we map each occupancy to
one of the 12 different speeds available. In theoretical models
of speed scaling, the processor speeds are continuous and
unbounded. In practical systems, there is a finite maximum
speed available, and the number of discrete levels is finite,
S0 a quantization step is needed to map from continuous to
discrete speeds. For most purposes, mapping to the closest
available speed suffices, though in deadline-based scheduling,
rounding up to the next higher available speed is required.

The second speed scaling strategy that we evaluate is de-
coupled speed scaling [8], specifically FSP-PS. This algorithm
runs the FSP scheduler, but uses the same CPU speeds as PS
would be using at any point in time. With this approach, the
energy consumption should be exactly the same as PS, though
the response time would be much lower. Furthermore, fairness
is preserved since FSP strictly dominates PS.

The third speed scaling strategy that we consider is
YDS [26]. This algorithm is known to complete all of its jobs
on time with the minimum possible energy consumption. To
do so, a deadline needs to be specified for each job. For our
purposes, we first use the PS execution schedule to determine
the completion time of each job, and then provide those
completion times to YDS as the deadlines for each job. With
this approach, we again achieve the strict dominance property:
no job completes later under YDS than it does under PS. This
allows us to compare response time and energy consumption,
without compromising fairness.



B. Workloads

To simplify the presentation and comparison of results, we
use batch workload examples from prior work [9]. The model
assumes a single server system, initially empty, to which a
batch of 12 jobs arrive. This job count was chosen so that all
12 system speeds could be exercised.

We use three different batch workloads to examine the
behavior of different speed scaling strategies. Workload 1 is a
batch of 12 homogeneous jobs. Each of these jobs would need
about 1-2 seconds of execution time on our system, depending
on the speed used. Workload 2 is a batch of 12 jobs whose
sizes differ additively in a simple arithmetic progression. The
largest job represents about 6-12 seconds of execution time,
depending on the speed used. Workload 3 is a batch of 12
jobs whose sizes differ by successive factors of 2. The largest
job needs 50-100 seconds of execution time, depending on
the speed used. These tests cover homogeneous jobs, as well
as heterogeneous jobs with medium and high variability. In
Workload 3, for example, the final job contributes about half
of the total system work.

Under PS, it is known that jobs leave the system in the
same order as under SRPT [10]. By definition, FSP schedules
jobs based on their order of departure under PS. Therefore, in
batch scheduling, FSP is equivalent to SJF (Shortest Job First)
scheduling. Though it is algorithmically different, YDS also
behaves similarly on these simple workloads, with respect to
the order of job completion.

C. Simulation Calibration and Validation

Table III summarizes the Profilo experimental results
for mean response time and energy consumption under the
three speed scaling policies. The tables represent the homoge-
neous (Workload 1), medium variance (Workload 2), and high
variance (Workload 3) job size distributions, respectively. For
each workload, the four columns show the total elapsed wall-
clock time for one run of the experiment, the mean response
time (E[T]) for the 12 jobs, and mean energy consumption
(in Joules) for PPO and PKG, for each policy evaluated.

There are two observations that are immediately evident
from the results in Table III. First, the total execution time for
a given workload is similar, regardless of the speed scaling
strategy used. This makes sense intuitively, since the volume of
work is the same. However, there is a small execution time ad-
vantage evident for YDS, especially on the heavier workloads
(Workload 2 and Workload 3). The latter is explainable by the
average speed that YDS computes for each critical interval.
Recall that this speed might need to be rounded up to the next
discrete speed available on the processor, in order to guarantee
that job deadlines are met. As a result, YDS tends to run its
job schedule slightly faster than required by PS. Second, size-
based scheduling provides dramatic improvements in mean
response time compared to PS. On Workload 1, for example,
the mean response times for FSP-PS and YDS are both about
half that for PS. Again, this makes sense intuitively for this
particular workload, since the jobs are all the same size. By
sharing the CPU equally across the jobs, PS keeps all the jobs

in the system until the very end', which hurts response time.
By contrast, FSP-PS and YDS both provide exclusive service
to one job at a time, resulting in more timely departures. This
is a huge advantage on Workload 1, but less of an advantage
in the other workloads when the final job accounts for most
of the total execution time.

Several observations regarding energy consumption are also
possible from Table III. First, the decoupled speed scaling
approach FSP-PS should (by definition) have exactly the same
energy consumption (PPO and PKG) as PS. However, it turns
out to perform slightly better than that, as is particulary evident
in Workload 2 and Workload 3. The fundamental reason for
this is fewer context switches than PS. Recall that PS will
have a context switch between processes every time slice (10
ms) in its workload schedule, while FSP-PS executes each
selected job to completion. This subtle advantage of FSP-
PS over PS in terms of operating system overhead becomes
noticable in our fine-grain measurement environment. Second,
YDS has an energy advantage over both PS and FSP-PS.
The primary reason is that YDS uses a “blended” average
speed to process all jobs in each critical interval. As such,
it avoids using the higher CPU speeds that PS and FSP-
PS use, for which the energy cost is (at least) quadratic
with the processor frequency. Supplementary reasons include
fewer context switches, fewer speed changes, and slightly
shorter execution times, as mentioned above, all of which
are advantageous to YDS. These subtle effects emerge in our
experimental framework.

D. Simulation Results

In this subsection, we present simulation results using our
calibrated speed scaling simulator. We start with a graphical
overview of simulator dynamics, as a validation against the
experimental measurements. Then we explore other scheduling
and speed scaling alternatives.

Figure 2 presents simulation results for Workload 1 (homo-
geneous jobs). The top row of graphs is for the PS scheduling
policy, while the second row is for FSP-PS (decoupled speed
scaling). (For space reasons, the graphical results for YDS
are excluded, but they are summarized in Table IV.) In each
row, the leftmost graph illustrates the instantaneous system
occupancy (number of active jobs), while the middle graph
shows the amount of work remaining in the system (i.e., the
sum of the remaining sizes of all active jobs), and the rightmost
graph shows the CPU speed being used at any time.

For PS on Workload 1, Figure 2 shows that the processor
runs at the maximum allowed speed, until all the jobs finish
and depart at the same time. The mean job response time is
14.4 seconds, which closely matches the experimental result
in Table III. For FSP-PS, the processor runs at the same speed
as PS, but service is devoted to one job at a time, so the job

'In theory, this is true, but in a practical implementation, the PS jobs
actually depart one-by-one in a staggered fashion, separated by at most one
full time slice between jobs. In a speed scaling system, this departure process
actually gets slightly elongated, since the processor speed decreases with each
successive departure. However, this effect on overall performance is minor.



TABLE III
EXPERIMENTAL RESULTS FOR MEAN RESPONSE TIME E[T] AND ENERGY CONSUMPTION (PP0O AND PKG) (12 JOBS, o = 1)

Speed Workload 1 Workload 2 Workload 3
Scaling || Time | E[T] [ PPO PKG Time | ET] PP0 PKG Time | E[T] PP0 PKG
Policy (s) (s) )] ) (s) (s) () @ (s) (s) () )]
PS 14.57 | 1449 | 76.80 | 131.50 || 46.23 | 30.10 | 199.99 | 372.98 166.15 | 38.05 | 562.47 | 1184.36
FSP-PS 1457 | 7.89 | 76.77 | 131.60 || 46.21 | 16.33 | 199.41 | 372.36 || 166.08 | 25.43 | 560.35 | 1180.83
YDS 1455 | 7.88 | 76.49 | 13093 || 4580 | 17.81 | 198.83 | 369.88 163.12 | 27.15 | 560.94 | 1170.05

departure points and system occupancy are different. The mean
response time is 7.8 seconds. YDS behaves exactly the same
as FSP-PS on this workload.

Figure 3 presents the corresponding simulation results for
Workload 2 (additive jobs). For this workload, the job de-
parture points under PS are all distinct, since the job sizes
are different. Thus the system occupancy and the CPU speed
both decrease over time, in a step-like fashion, until the system
empties. The mean response time for jobs under PS is 29.9
seconds. FSP-PS has exactly the same CPU speed profile as PS
(by definition). However, it has a response time advantage over
PS because of its dedicated service to one job at a time, rather
than time-slicing. The mean response time for jobs under FSP-
PS is 16.3 seconds. YDS uses a (rounded up) fixed speed of
1900 MHz on this workload, resulting in slightly lower energy
consumption than FSP-PS, but slightly higher response time.
The mean response time is much lower than PS, though.

Figure 4 shows the simulation results for Workload 3
(multiplicative jobs). For this workload, about half of the
execution time is spent on the largest job, and it finishes at the
lowest speed, since it is the last remaining job in the system.
The mean response time under PS is 38.4 seconds, while that
for FSP-PS is 25.7 seconds. YDS selects a fixed speed of 1400
MHz (rounded up) for this workload, resulting in a response
time of 27.4 seconds, but the lowest energy consumption (as
expected) amongst the three policies being compared.

The foregoing results show that our speed scaling simulator
is working correctly, and that decoupled speed scaling (FSP-
PS) has a distinct response time advantage over PS with
coupled speed scaling. FSP-PS also provides fairness, since
no job finishes later than it did under PS. YDS minimizes
energy consumption, while sacrificing response time slightly.

With the validated simulator, we can now evaluate the
response time, energy, and fairness characteristics for other
scheduling policies and speed scalers that might be difficult
to implement in Linux. Table IV provides examples of such
results for Workload 1, Workload 2, and Workload 3. Among
these results, SRPT-PS consistently provides the best response
time, though it does not have the fairness properties of FSP-
PS. FCFS performs identically to SRPT since these are batch
workloads, and the jobs are in non-decreasing order of size.
As expected, LRPT has the worst response time amongst
the policies evaluated. However, it does not always have the
highest energy consumption, since in some cases it completes
the entire batch workload up to 40% sooner than other policies,
such as PS. The results in Table IV provide further evidence
of the many tradeoffs between response time, fairness, and

energy consumption in dynamic speed scaling systems.

VII. CONCLUSIONS

In this paper, we discussed the design and implementation
of a novel experimental environment for speed scaling mea-
surements. Our implementation, which uses a mix of kernel-
space and user-space functionality, provides a very general and
flexible platform to quantify performance tradeoffs between
different scheduling and speed scaling strategies.

We used our experimental platform in two different ways.
First, we did micro-benchmarking to measure system costs and
power consumption for different operating modes on the i7
processor. We used these measurement results to calibrate and
validate a discrete-event simulator for dynamic speed scaling
systems. Second, we used our simulator and experimental
platform to evaluate three different speed scaling strategies
from the literature: PS, FSP-PS, and YDS. We believe that
our results provide the first direct comparison of these speed
scaling strategies using realistic system costs.

ACKNOWLEDGEMENTS

Financial support for this work was provided by Canada’a
Natural Sciences and Engineering Research Council (NSERC).
The authors thank the anonymous MASCOTS 2016 reviewers
for their constructive suggestions on improving our paper.

REFERENCES

[1] S. Albers, FE. Mueller, and S. Schmelzer, “Speed Scaling on Parallel Pro-
cessors”, Proceedings of ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 289-298, 2007.

S. Albers, “Energy-Efficient Algorithms”, Communications of the ACM,
Vol. 53, No. 5, pp. 86-96, May 2010.

L. Andrew, M. Lin, and A. Wierman, “Optimality, Fairness, and Robust-
ness in Speed Scaling Designs”, Proceedings of ACM SIGMETRICS,
pp- 37-48, June 2010.

N. Bansal, T. Kimbrel, and K. Pruhs, “Speed Scaling to Manage Energy
and Temperature”, Journal of the ACM, Vol. 54, 2007.

N. Bansal, K. Pruhs, and C. Stein, “Speed Scaling for Weighted Flow
Time”, Proceedings of ACM-SIAM Symposium on Discrete Algorithms,
2007.

N. Bansal, H. Chan, and K. Pruhs, “Speed Scaling with an Arbitrary
Power Function”, Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, 2009.

D. Bovet and M. Cesati, Understanding the Linux Kernel, O’Reilly,
2005.

M. Elahi, C. Williamson, and P. Woelfel, “Decoupled Speed Scaling:
Analysis and Evaluation”, Performance Evaluation, Vol. 73, No. 73C,
pp. 3-17, March 2014.

M. Elahi, C. Williamson, and P. Woelfel, “Turbocharged Speed Scal-
ing: Analysis and Evaluation”, Proceedings of IEEE MASCOTS, Paris,
France, pp. 41-50, September 2014.

E. Friedman and S. Henderson, “Fairness and Efficiency in Web Server
Protocols”, Proceedings of ACM SIGMETRICS Conference, San Diego,
CA, pp. 229-237, June 2003.

[2]
[3]

[4]
[5]

[6]

[7]
[8]

[9]

[10]



Number of Active Jobs

Number of Active Jobs

Number of Active Jobs

Number of Active Jobs

Number of Jobs Remaining in System (PS)

(a) Active Jobs (PS)

Number of Jobs Remaining in System (FSP-PS)

Time

(d) Active Jobs (FSP-PS)
Fig. 2.

Number of Jobs Remaining in System (PS)

(a) Active Jobs (PS)

Number of Jobs Remaining in System (FSP-PS)

0O 5 10 15 20 25 30 35 40 45
Time

(d) Active Jobs (FSP-PS)
Fig. 3.

50

Remaining Work

Remaining Work

Remaining Work

Remaining Work

Amount of Work Remaining in System (PS)
30

Work
Departures

25 b

20 b

15

10

sl

0

Time

(b) Active Work (PS)

Amount of Work Remaining in System (FSP-PS)

Work
Departures .

(e) Active Work (FSP-PS)

Amount of Work Remaining in System (PS)

Work
70 P Departures

v

10 15 20 25 30 35 40 45 50
Time

(b) Active Work (PS)

Amount of Work Remaining in System (FSP-PS)

Work
70 P Departures

0 5 10 15 20 25 30 35 40 45 50
Time

(e) Active Work (FSP-PS)

Service Rate

Service Rate

Service Rate

Service Rate

Service Rate (PS)

(c) CPU Speed (PS)

Service Rate (FSP-PS)

Time

(f) CPU Speed (FSP-PS)

Simulation Results for Dynamic Speed Scaling (Workload 1: Homogeneous jobs)

Service Rate (PS)

0 5 10 15 20 25 30 35 40 45 50
Time

(c) CPU Speed (PS)

Service Rate (FSP-PS)

0 5 10 15 20 25 30 35 40 45 50

Time

(f) CPU Speed (FSP-PS)

Simulation Results for Dynamic Speed Scaling (Workload 2: Additive jobs)



(11]

(12]

[13]
[14]

[15]

[16]

(171

(18]

(19]

Number of Jobs Remaining in System (PS)

Amount of Work Remaining in System (PS)

Service Rate (PS)

T 2

" Work
Departures

Service Rate

. 200
180
z 10 160
2 £ 140
5 8 Z 12
o
b £ 100
4 g 80
£
. £ 60
z 40
2
20
0 0
0 20 40 60 80 100 120 140 160 180 0 20 40 60
Time

(a) Active Jobs (PS)

Number of Jobs Remaining in System (FSP-PS)

80 100 120 140 160 180 0 20 40 60

Time

(b) Active Work (PS)

Amount of Work Remaining in System (FSP-PS)

80 100 120 140 160 180
Time

(c) CPU Speed (PS)

Service Rate (FSP-PS)

Number of Active Jobs
B
Remaining Work

Departures

Work

Service Rate

0 20 40 60 80 100 120 140 160 180 0 20 40 60
Time

(d) Active Jobs (FSP-PS)
Fig. 4.

80 100

Time

(e) Active Work (FSP-PS)
Simulation Results for Dynamic Speed Scaling (Workload 3: Multiplicative jobs)

TABLE IV
SIMULATION RESULTS FOR MEAN RESPONSE TIME E[T'] AND ENERGY CONSUMPTION (PPO AND PKG) (12 JOBS, o = 1)

120 140 160 180 0 20 40 60 80 100 120 140 160 180

Time

(f) CPU Speed (FSP-PS)

Speed Workload 1 Workload 2 Workload 3

Scaling Time | E[T] | PPO | PKG || Time | E[T] | PPO | PKG Time | E[T] [ PPO PKG

Policy (s) (s) @ ) (s) (s) () )] (s) (s) )] )
PS 14.4 144 | 755 | 1324 472 29.9 | 205.1 | 3873 167.5 | 384 | 564.8 | 1199.0
FSP-PS 14.4 7.8 75.5 | 132.3 472 163 | 205.0 | 3873 167.5 | 257 | 564.8 | 1199.0
YDS 14.4 7.8 75.5 | 132.3 46.2 17.5 | 2044 | 3833 1645 | 274 | 5629 | 1186.8
FCFS 19.7 9.5 78.8 | 154.7 58.3 19.7 | 2119 | 434.0 179.0 | 279 | 572.0 | 12472
SRPT 19.7 9.5 78.8 | 154.7 58.3 19.7 | 211.9 | 434.0 || 179.0 | 279 | 572.0 | 12472
LRPT 14.4 144 | 755 | 1324 38.2 382 | 199.5 | 349.5 100.2 | 100.2 | 5229 | 916.4
FCFS-PS 14.4 7.8 75.5 | 1323 472 163 | 205.0 | 3873 167.5 | 257 | 564.8 | 1199.0
SRPT-PS 14.4 7.8 75.5 | 132.3 472 163 | 205.0 | 3873 167.5 | 257 | 564.8 | 1199.0
LRPT-PS 14.4 144 | 75.5 | 1325 47.2 472 | 205.0 | 3874 || 167.5 | 167.5 | 564.8 | 1199.1

M. Hahnel, B. Dobel, M. Volp, and H. Hartig, “Measuring Energy
Consumption for Short Code Paths Using RAPL”, Proceedings of ACM
GreenMetrics, London, UK, June 2012.

Intel, “Intel 64 and IA-32 Architectures Software Developer Manu-
als”, http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html.

R. Love, Linux Kernel Development, Pearson Education, 2010.

D. Lu, H. Shen, and P. Dinda, “Size-based Scheduling Policies with
Inaccurate Scheduling Information”, Proceedings of IEEE/ACM MAS-
COTS, Volendam, Netherlands, pp. 31-38, October 2004.

D. Meisner, B. Gold, and T. Wenisch, “PowerNap: Eliminating Server
Idle Power”, Proceedings of ACM ASPLOS, Washington, DC, pp. 205-
216, March 2009.

I. Rai, G. Urvoy-Keller, and E. Biersack, “Analysis of LAS Scheduling
for Job Size Distributions with High Variance”, Proceedings of ACM
SIGMETRICS Conference, San Diego, CA, pp. 218-238, June 2003.

T. Rauber and G. Runger, “Energy-Aware Execution of Fork-Join-based
Task Parallelism”, Proc. IEEE MASCOTS, Washington, DC, Aug. 2012.
L. Schrage, “A Proof of the Optimality of the Shortest Remaining
Processing Time Discipline”, Operations Research, Vol. 16, pp. 678-
690, 1968.

D. Snowdon, S. Petters, and G. Heiser, “Accurate On-line Prediction
of Processor and Memory Energy Usage under Voltage Scaling”, Pro-

[20]

[21]

[22]

(23]

[24]

[25]

[26]

ceedings of the 7th International Conference on Embedded So
pp. 84-93, Salzburg, Austria, 2007.

D. Snowdon, E. Le Sueur, S. Petters, and G. Heiser, “Koala: A Plat-
form for OS-level Power Management”, Proceedings of ACM EuroSys,
pp- 289-302, 2009.

V. Spiliopoulos, A. Sembrant, and S. Kaxiras, “Power-Sleuth: A Tool
for Investigating your Program’s Power Behavior”, Proceedings of IEEE
MASCOTS, Washington, DC, August 2012.

C. Stolte, R. Bosche, P. Hanrahan, and M. Rosenblum, “Visualizing
Application Behavior on Superscalar Processors” Proceedings of IEEE
InfoVis, pp. 10-17, 1999.

V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring Energy and Power with PAPI”,
Proceedings of International Conference on Parallel Processing pp. 262-
268, September 2012.

M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy”, Proceedings of USENIX Operating System
Design and Implementation (OSDI), 1994.

A. Wierman, L. Andrew, and A. Tang, “Power-Aware Speed Scaling in
Processor Sharing Systems”, Proc. of IEEE INFOCOM, April 2009.

F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for Reduced
CPU Energy”, Proceedings of ACM Foundations of Computer Systems
(FOCS), pp. 374-382, 1995.

are,



