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Abstract

This paper proposes a scalable architecture for mul-
timedia streaming in wireless LANs. Current IEEE
802.11 WLANs can support tens of media stream-
ing users. We propose a hierarchical approach that
can support over 1000 concurrent users. Our archi-
tecture exploits several existing technologies, includ-
ing multi-channel WLANs, power control, and caching.
The paper first describes the system design and oper-
ation, as well as assumptions and constraints. Per-
formance issues are then explored via simulation, us-
ing synthetically-generated media streaming workloads.
The simulation results show that: 1) our design can
support up to 1600 concurrent media streaming clients
using current WLAN technology; 2) the system archi-
tecture is quite robust to the user-level characteristics
of the media streaming workload; and 3) proper cache
management can make the system operate effectively
even with limited cache sizes.

1 Introduction

IEEE 802.11 [10] wireless local area networks
(WLANs) are currently in widespread use. At the same
time, multimedia network applications, such as media
streaming and video conferencing, are growing in pop-
ularity on the Internet.

802.11 WLANs can adequately support the QoS re-
quirements of multimedia applications, as long as the
number of users is limited. For example, Cao et al. [4]
show experimentally that an 11 Mbps 802.11b ad hoc
network can deliver good quality multimedia streams
(400 kbps video and 128 kbps audio per user) for up to
8 clients. Adding one more client, however, overloads
the system, degrading the performance for all users.

This paper studies wireless media streaming in a
larger-scale WLAN. As an example scenario, consider
a stadium, gymnasium, or arena setting where hun-
dreds or thousands of spectators could use wireless

networking technologies to access rich multimedia con-
tent during a live sporting event. If a WLAN blankets
the stadium, then the spectators can use their personal
wireless devices to view (on demand) an assortment of
media objects, including replays, highlights, player in-
terviews, advertisements, and live streaming feeds from
different camera angles throughout the stadium.

Using a wireless infrastructure, rather than wired,
offers the advantages of portability and easy deploy-
ment. However, the performance challenges are many,
with scalability being the central issue. Traditional
802.11 WLANs cannot support hundreds of streaming
users, for several reasons. First, 802.11 WLANs have
limited bandwidth (11 Mbps for 802.11b, and 54 Mbps
for 802.11a/g), and only about 60% of this capacity is
effectively usable for end-to-end throughput [16]. Sec-
ond, a wireless channel is shared by all users in the
network. With hundreds of users, the per-user band-
width share is inadequate for multimedia streaming.

Our work focuses on improving the scalability of
wireless media streaming in 802.11 WLANs. In
the wired Internet, many techniques have been pro-
posed to make multimedia streaming scalable. These
approaches include multicast [2, 8, 9, 20], proxy
caching [19, 22], and Content Distribution Networks
(CDNs) [1], to name a few. However, for multimedia
streaming in 802.11 WLANs, none of these provide a
complete solution on their own.

In this paper, we propose a scalable approach that
combines ideas from multi-channel WLANs, transmis-
sion power control, and cache-and-relay technologies.
The paper first describes the basic system design and
operation, as well as the assumptions underlying our
work. Performance issues are then explored via sim-
ulation, using different assumptions about the media
streaming workload characteristics.

The rest of the paper is organized as follows. Sec-
tion 2 discusses related work and technologies. Sec-
tion 3 describes system architecture. Section 4 presents
our simulation methodology. Section 5 presents simu-
lation results. Section 6 concludes this paper.
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2 Background and Related Work

Many techniques have been proposed to make media
streaming scalable on the Internet. We discuss proxy
caching, multicast, and coding as examples.

Liu et al. [19] evaluated four classes of caching
strategies for media streaming, while Park et al. [22]
proposed a two-layer proxy server architecture to in-
crease streaming scalability. However, both studies fo-
cus on wired networks. In a WLAN, proxy servers
interfere with each other because of the shared band-
width. Thus proxy caching cannot be directly used in
WLANs.

Multicasting is scalable. Moreover, it can bene-
fit from the broadcast nature of wireless transmission.
Many users requesting the same media object can join
a multicast session by simply listening to the channel.
However, multicast may not scale as expected when
user interactions with media streams (e.g., rewind and
fast forward) are involved [14]. Also, the server band-
width cost of a multicast session might limit the num-
ber of sessions (for different media objects) co-existing
in a WLAN (refer to Figure 2 of [1]).

Jenkac et al. [11] proposed a broadcasting approach
that applies fountain codes to Harmonic Broadcasting
(HB) [5]. It is scalable, and can provide asynchronous
and reliable media streaming service in wireless envi-
ronments. However, there is a sharp tradeoff between
low start-up delay and high server bandwidth cost in
HB. The processing cost for decoding on resource-poor
mobile devices is also an issue. Moreover, as with
most periodical broadcasting schemes, it cannot sup-
port user interactions well.

To address the aforementioned limitations, we pro-
pose a new scalable approach for wireless media
streaming. In the following, we review three key tech-
nologies used in our solution: multi-channel WLANs,
transmission power control, and caching-and-relay
technologies:

Multi-channel: The term multi-channel refers to
wireless technology that can use more than one radio
channel. For example, Mishra et al. [21] demonstrate
that 802.11b/g networks can support up to 4 radio
channels concurrently. Some wireless devices achieve
this property using multi-radio systems, with each in-
terface communicating on a different physical chan-
nel. Other devices have just a single radio transceiver,
which is tunable to any of the available channels.

Multi-channel systems are commercially available
now for infrastructure-based WLANs [6]. Using mul-
tiple channels increases the number of WLAN users
that can be supported, while improving mobility man-
agement and traffic load balancing [18].

Multi-channel systems are also valuable in multi-hop
wireless ad hoc networks. The use of multiple physical-
layer channels reduces contention among neighbouring
nodes, increasing concurrency in frame transmissions
and improving throughput for the network [17].

Power Control: Power control is a well-known
technique to limit the signal coverage area by reducing
the transmission power [7]. With power control and/or
directional antennas, mobile users can be geographi-
cally divided into smaller groups. In each group, con-
tention and collisions are significantly reduced. How-
ever, merely limiting the number of users per group
does not guarantee sufficient bandwidth for streaming
traffic, since the available bandwidth is still shared with
incoming and outgoing traffic. This problem can be al-
leviated using multi-channel technology.

Cache-and-Relay: The idea of cache-and-relay ex-
tends caching technology for media streaming [3, 13,
15]. A streaming client caches a stream while display-
ing the media and, if needed, can relay the stream
to other downlink clients that later request the same
stream. This approach can save significant bandwidth.
With cache-and-relay, all the streaming clients in a net-
work are managed in a tree, with the origin server as
the root, relay nodes as the intermediate branching
points, and end users as leaf nodes.

A cache-and-relay system resembles a multicast tree,
but there are two main differences. First, multicast
does not typically provide caching (though some tech-
niques use prefix caching to reduce startup delays).
Second, a multicast session provides one stream ob-
ject only. In cache-and-relay, a relay node can provide
content for any streams that it has cached.

3 System Architecture

In this section, we describe a hierarchical approach
for wireless media streaming. Our system architec-
ture leverages ideas from multi-channel WLANs, power
control, and cache-and-relay technologies. The goal is
to support hundreds or thousands of wireless media
streaming users in a stadium WLAN. Though we fo-
cus on unicast in this paper, our system can easily be
extended to support multicast, with greater scalability.

3.1 Network Setup

Figure 1 illustrates our proposed architecture for
scalable wireless media streaming. Figure 1(a) provides
a conceptual (side) view of the system, illustrating its
hierarchical structure. Figure 1(b) provides a bird’s
eye (top) view of the system, illustrating its spatial
structure. Further description of the system follows.
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Figure 1. System Architecture for Scalable Wireless Media Streaming

The topmost component in Figure 1(a) is the me-
dia center, which is the central repository for all media
objects generated, stored, and accessed in the stadium
WLAN. The media center includes a streaming server,
referred to as the origin server, as well as ample storage
space for dozens of media objects. For ease of exposi-
tion, our discussion assumes stored (i.e., pre-recorded)
media objects, though the media center can certainly
have facilities (e.g., video camera, microphone) for live
streams as well. For simplicity, we assume Constant
Bit Rate (CBR) media streams.

With a single wireless transceiver at the media cen-
ter, only a limited number of users could be accom-
modated. We express the “capacity” in terms of the
number N of simultaneous CBR streams that can be
supported. The value of N depends on the WLAN
technology chosen (e.g., 802.11b or 802.11g) and the
media quality provided (e.g., 128 kbps or 500 kbps per
stream). The default value N = 32 models an 802.11g
WLAN with 500 kbps per stream.

To increase the total number of streaming users sup-
ported, cache-and-relay nodes are used between the
media center and the streaming users. As shown in
Figure 1, these nodes are organized in a tree structure
with the media center as the root. A system parameter
k specifies the number of levels in the hierarchy. Media
requests from users propagate up the hierarchy, while
media streams are delivered down the hierarchy.

Each level beneath the media center contains a set of
cache-and-relay nodes. We refer to these nodes gener-
ically as proxies1. The proxies perform on-demand
caching for media objects, on a block basis, where a
block is a fixed-size or fixed-duration (e.g., 1 second)
segment of a media object.

1The proxies could be special nodes deployed in the WLAN
by the network designer, or they could be regular clients in the
ad hoc network that are well-resourced, spatially well-positioned,
and willing to function as a proxy.

The media center communicates directly with the
Level-1 proxies, which in turn communicate directly
with the Level-2 proxies, and so on. In Figure 1, k = 3,
so the Level-3 proxies communicate directly with the
wireless streaming clients.

Wireless channel usage is carefully coordinated in
our system. Because all Level-1 proxies must be within
transmission range of the media center, frame trans-
missions by these proxies could possibly interfere with
each other. To avoid this interference problem, we use
power control to constrain the downstream transmis-
sion range of each proxy, as shown in Figure 1(b). Cir-
cular regions of coverage are assumed, with the radius
decreasing as you descend the hierarchy. Each level of
the hierarchy operates on a different wireless channel2,
as indicated in Figure 1(a).

This wireless layout minimizes intra-level and inter-
level interference for the proxies. As a result, the
lowest-level “mini-cells” in our architecture can each
support up to N concurrent media streams. Increasing
the number of levels in the hierarchy, or the branch-
ing factor at each level, increases the overall number of
concurrent media streams that can be supported.

For maximum system capacity, each proxy node
needs two wireless network interfaces, with each op-
erating on a different channel. One interface is used
for parent communication (i.e., propagating user re-
quests upstream, and receiving incoming media flows
to send downstream), while the other is used for child
communication (i.e., receiving incoming user requests,
and sending outgoing media flows downstream). This
is the default system setup in our study.

This setup provides concurrency between incoming
and outgoing media streams. That is, even though each
wireless interface is half-duplex, the two interfaces op-

2For 802.11b/g, there can be up to 4 different channels con-
currently in use. The 3-level hierarchy in our example respects
this constraint.
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erate independently. If only a single interface is avail-
able, the proxy itself operates as “half-duplex”, and
system throughput is halved.

3.2 System Operation

Admission control is important for stable operation
of the system. The maximum number of outgoing
streams that can be supported at any level is N = 32.

When a user generates a request at the leaf level,
the request is sent to the proxy for that user’s mini-
cell. Whether the request can be served or not de-
pends on the request type (e.g., start, stop, rewind,
fast forward), and the current resource availability in
the WLAN.

If the proxy (or server) node has no capacity

Then block the request

Else If the node has the desired content

Then

Grant the request.

Start a new stream from this node.

Update resource consumption for this

node and all lower-level proxies

along the path to the client.

Else

Recursively check the parent proxy

(or origin server) with this procedure.

Figure 2. Admission Control Algorithm

In our system model, an incoming request to start
a new media stream is handled as shown in Figure 2.
Note that the media center stores all of the media ob-
jects in the system, so the content can always be found.
Requests at the root level are rejected only when chan-
nel capacity is fully committed.

If proxies have infinite-size caches, then the initial
requests for media objects replicate content along paths
of the tree, and subsequent requests for the same ob-
jects are served from caches close to the clients. How-
ever, with finite cache sizes, cache misses will occur.

Cache misses sometimes lead to the blocking of re-
quests. Satisfying a miss requires media movement
across at least one level of the caching hierarchy, which
may or may not be possible, depending on the current
resource usage. Blocking can happen at any level of
the hierarchy, at any time.

User interactions with the media stream (e.g., fast
forward, rewind) can exacerbate cache misses. In fact,
it is possible for an in-progress media streaming session
to be interrupted (terminated). For example, consider
a session that is currently streaming from a Level-3
cache, when a user fast forwards to a new portion of

the object that is not yet in the cache. Acquiring the
missing pieces of the media object from a higher-level
cache (or the origin server) may not be possible if up-
stream resources are fully in use. The media stream-
ing session is terminated. This unfortunate outcome is
called a dropped session.

Cache management plays an important role in our
system. The main issues are the cache size and the
cache replacement policy (see Section 5.2).

3.3 System Capacity

Our system architecture can be modelled as a tree.
Hence, we can analyze the system scaling characteris-
tics using its tree properties. Starting from the root,
the branching factor from the media center to the
Level-1 proxies is L1. In general, the branching fac-
tor to the Level-i proxies is Li, where Li ≤ N . The Li

values can be set independently at each level.
The maximum number Nmax of users that can be

supported depends on N and on the branching factor
at each of the k levels of proxies:

Nmax = N

k∏

i=1

Li (1)

Figure 1 shows an example of a 3-level hierarchy with 4
cache-and-relay proxies in each level. For this system,
Nmax = 2048. This calculation assumes that each user
has one active unicast media stream.

Careful system design needs to consider the num-
ber of levels as well as the number of proxies in each
level. Clearly, increasing the branching factor increases
Nmax. However, the Li values cannot be increased ar-
bitrarily, because wireless transmission range cannot
be precisely controlled. Also, increasing the branching
factor constrains the number of media streams that can
be allocated on each downstream link.

3.4 Capacity Constraints

Whether the system can actually support Nmax

users or not depends on caching performance (i.e.,
hit/miss rates) and system dynamics (i.e., timing and
location of user requests, and the media objects de-
sired). With cache-and-relay, each proxy can cache
media content that it has received in the past, keep-
ing as much useful content as possible (depending on
its cache size and replacement policy). With infinite
cache size, the problem is trivial: all the media con-
tent is eventually cached in the proxies closest to the
users. As long as users are evenly distributed across
the mini-cells, Nmax can be achieved.
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With finite caches, and perhaps new content gener-
ated at the media center, cache misses are more fre-
quent. As mentioned earlier, cache misses can lead to
request blocking and/or session dropping. The worst
case is if each user requests a distinct media object. In
this extreme situation, the root level of the hierarchy
is the bottleneck: system capacity is limited to at most
N concurrent media streams.

In summary, the proposed system can achieve Nmax

only if the following two constraints are satisfied. First,
each mini-cell must have N users. Second, the cache
hit rate at each proxy must be high enough to limit
its upstream workload demands to at most N/Li me-
dia streams (on average) from its parent. We call this
constraint the filtering bound.

These constraints, particularly the filtering bound,
have several important implications:

• User interactions such as “rewind” and “fast for-
ward” can increase the cache miss rate, making
Nmax unachievable. See Section 5.1.

• Cache size and cache replacement policy affect the
cache hit rate, and thus the system scalability. We
explore this issue in Section 5.2.

• The filtering bound depends on Li, the branching
factor at Level-i. Thus, system parameters might
affect achievable system performance. We com-
pare different architectures in Section 5.3.

• As the size and diversity of the media object col-
lection increases, the cache miss rate may suffer.
We study this effect in Section 5.4.

4 Simulation Methodology

4.1 Overview

We use simulation to study the scalability charac-
teristics of the proposed system. There are four main
factors of interest in our study: the effects of media
user interactions, caching issues, system parameters,
and the size of the media streaming workload.

The system architecture is defined by specifying the
number of levels k and the branching factor Li at each
level. For example, the architecture shown in Figure 1
uses k = 3 and L1 = L2 = L3 = 4. This example is the
default configuration for most of our experiments. For
convenience, we refer to this design as “4.4.4”.

The primary performance metric in our study is the
number of simultaneous user media streams that can
be supported. Secondary performance metrics include
the number of blocked requests, the number of dropped

media streaming sessions, and the average number of
outgoing media streams at each level of the hierarchy.

4.2 Simulation Assumptions

The following assumptions simplify our study:
– Users do not move. A streaming session, once

started, remains in the same mini-cell until it termi-
nates or is dropped.

– Existing solutions for caching, relaying, and power
control can be used to deploy our system.

– Cache-and-relay nodes have two 802.11g inter-
faces, so that N = 32.

– The hierarchy is homogeneous and balanced. That
is, each level uses the same branching factor, and each
mini-cell has a similar number of users.

– The downstream capacity for media content de-
livery is the bottleneck. Bandwidth consumption for
sending user requests upstream is ignored.

4.3 Workloads

The media-streaming workloads for our simulator
are generated using GISMO (Generator for Internet
Streaming Media Objects [12]). GISMO provides con-
trol over the number, size, and popularity of media
objects, as well as the user-level access characteristics.
GISMO generates workloads at the session level and
request level. A session corresponds to a single user
generating 1 or more requests for 1 media object.

In our initial experiments (Sections 5.1, 5.2, and
5.3), we use workloads that are as simple as possible,
to better understand system behaviour. These work-
loads have a single read-only media object that is 7200
seconds (2 hours) long. The session arrival process is
Poisson, with an average rate of 1000 session arrivals
per hour. Each session starts playback at the beginning
of the media object.

The workloads differ in how the users interact with
the media objects. There are four different models in
our study. The first user model, and the simplest, is the
Passive user. Such a user views a media object in its
entirety, from start to finish, with no additional inter-
actions. The second user model is Early Termination.
Such a user views a media object in a sequential fash-
ion, but may issue a “stop” command at any time. The
third user model includes Rewind functionality. Such
a user may jump backwards in the media stream at
any time, to repeat viewing an earlier portion of the
object. The fourth user model is called Random Jump.
Such a user may rewind or fast forward (skip) within
the media object at any time. Random Jump provides
the most complete model of user-level behaviour.

5



Statistical distributions are used to model the user
characteristics. In the Early Termination model, the
playback duration is modelled using a bounded Pareto
distribution. For Rewind and Random Jump users,
playback can jump to a different location in the me-
dia object, from which sequential playback occurs until
the next jump or the 2-hour play time is reached. The
jump distances are modelled using Pareto. The time
between jumps are modelled using an exponential dis-
tribution, with a parameter λ specifying the frequency
of jumps [12]. We use the default GISMO parameters
for these models.

In Section 5.4, we use a more complicated media
streaming workload with 32 media objects. Object
popularity follows a Zipf-like distribution, and object
sizes follow a Lognormal distribution, both using de-
fault parameters in GISMO. Early Termination and
Random Jump are both considered.

4.4 Simulator Overview

We developed our own event-driven simulator of the
proposed system. Input parameters specify the system
architecture (e.g., 4.4.4). A media streaming workload
file is provided as input. The simulator operates at
the media stream level; the network protocol stack is
not simulated. For each new user request in the work-
load, the user is mapped to a mini-cell uniformly at
random. The proxy in that mini-cell starts the proce-
dure in Figure 2 to determine system resource avala-
bility. If the request is granted, the streaming session
starts and continues until either the session finishes or
a jump happens. Upon a jump, the admission proce-
dure is checked again. An existing streaming session
can be dropped if resources are unavailable.

5 Simulation Results

This section presents the results from our simulation
experiments. The experiments study the sensitivity to
certain workload factors and system design parameters.

5.1 User-Level Workload Behaviour

The first experiment studies the effect of user-level
behaviour on the system operation. All tests in this
section use a 4.4.4 system, for which Nmax = 2048. All
proxy nodes have infinite cache size.

Our initial validation tests (not shown here) used
light traffic loads. The results show correct system op-
eration, with no blocking or dropping observed. All
requests are granted, and complete successfully. The
following tests study system behaviour under overload.
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Figure 3. Number of concurrent media
streams for different user behaviour models

For the Passive user model, we study system sat-
uration when handling 1440 session arrivals per hour.
This arrival rate exceeds the system capacity (1024 re-
quests per hour) determined from Little’s Law (since
each request is for a 2-hour media object).

Figure 3 presents the simulation results. The graph
shows the number of simultaneous user streams in ser-
vice, as a function of simulation time. There are four
lines on the graph, one for each user-level workload
model considered.

Figure 3 shows that the system reaches steady-state
within a few hours, and remains stable for the rest
of the simulation duration (24 hours). The Passive
workload model saturates with about 1800 sessions in
service at a time. This number is lower than Nmax be-
cause of system dynamics (i.e., unbalanced load across
mini-cells), and the request blocking that occurs. No
session dropping is possible for the Passive user model.

We next consider the Early Termination model, in
which subsequent requests for the same media object
can sometimes lead to session dropping. Since the aver-
age session duration (2448 seconds) is shorter than for
the Passive user model (7200 seconds), we saturate the
system by sending 3000 session arrivals per hour. The
simulation results in Figure 3 show that the system can
sustain about 1700 concurrent streams.

For Rewind and Random Jump users, session drop-
ping is even more likely. The workload consists of 1000
session arrivals per hour. Figure 3 shows that for these
two user models, around 1600 concurrent streams can
be supported.

User interaction does affect the system steady-state
behaviour. However, these impacts are not dramatic.
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5.2 Caching Issues

Caching plays a key role in our system. The previous
results in Section 5.1 look promising, but those results
assumed infinite cache size, which is not realistic.

In this section, we study the issue of cache size and
cache replacement policy. These simulations assume a
4.4.4 system, the Random Jump workload model, and
1000 requests per hour.

We consider three cache replacement policies,
namely Random (a simple baseline policy), Least-
Recently-Used (LRU), and Least-Frequently-Used
(LFU)3. We vary cache sizes from 0 (none) to 7200
blocks (infinite), using intermediate values of 100, 200,
400, 800, 1600, 3200, and 6400 blocks.

Selected simulation results are presented in Figure 4.
Figure 4(a) shows the results for the Random cache
replacement policy, while Figure 4(b) shows the results
for LRU, and Figure 4(c) shows the results for LFU.

There are two main observations from these results:

• When there is no cache, only N = 32 users can be
accommodated at a time (note the line just above
the horizontal axis). This result is obvious, since
the media center becomes the bottleneck.

• With an adequate cache size, all caching policies
can support about 1600 concurrent media users.
However, the caching policies differ in their effec-
tiveness at smaller cache sizes. LFU in Figure 4(c)
is the most effective policy; the system reaches the
same steady-state level as long as the cache size is
at least 100 blocks (1.4% of the media object size).
Random and LRU are less effective. Random in
Figure 4(a) needs a cache size of 800 blocks (11%
of object size) to reach its steady-state level, while
LRU in Figure 4(b) needs at least 1600 blocks
(22% of object size).

LFU outperforms LRU and Random because of
the characteristics of the media streaming traffic
models. GISMO workloads are biased toward the
beginning portion of media objects. LFU exploits
this property well, and tends to retain the popular
initial portion of the media object in cache.

These results show that with caching, the system
can support 1600 users. Furthermore, this can be
achieved with modest cache sizes.

We further study the dynamic evolution of our sys-
tem over time, to gain insights into the effects of cache
size and cache management. Figure 5 shows how cache
size and replacement policy affect the system resource

3In reality, LFU with aging can be applied to avoid the “cache
pollution” problem.
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Figure 4. Comparison of different caching re-
placement policies

usage at each level. Each graph shows a time series plot
of the (average) number of concurrent downstream me-
dia streams at each level of the hierarchy. The rows of
graphs represent different cache sizes, from 0 to 1600
blocks. From left to right, the graphs correspond to
Random, LRU, and LFU replacement, respectively.

When no cache is present, the bottleneck is at the
root of the hierarchy. The media center quickly satu-
rates with N = 32 concurrent media streams, and re-
mains there throughout the simulation. The 64 Level-3
proxies each have 0.5 media streams, on average.

As the cache size is increased in subsequent rows
of Figure 5, different transitions occur for the caching
policies. For example, the LFU policy functions well
with a cache size of 100 blocks. With this cache size,
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Figure 5. System evolution for different cache sizes and replacement policies

the useful media content is pulled down the hierarchy
toward the clients, offloading the higher levels of the
hierarchy. The system reaches steady-state with an
average of 25 concurrent user media streams at each
leaf-level proxy. For the same cache size of 100 blocks,
Random and LRU remain saturated at the root level.

When the cache size is 800 blocks, the Random pol-
icy achieves the same steady-state behaviour as LFU.
Since there are multiple levels of cache (each 800 blocks
in size and managed independently), many media ob-
ject requests can be satisfied within the hierarchy. The
root level is no longer the bottleneck.

At a cache size of 1600 blocks, the LRU policy also

transitions toward the same steady-state behaviour as
LFU, albeit rather slowly. There are three reasons for
the poor performance of LRU. First, GISMO workloads
bias requests to the initial portion of media objects.
LFU exploits this characteristic better than LRU does.
Second, the blocks of the media objects tend to be
accessed sequentially when media objects are viewed.
Sequential reference patterns do not work well with
LRU caches when the object size exceeds the cache
size, and recency becomes a poor predictor. Third, the
multiple levels of caches all have the same cache size
and the same replacement policy. If one level of cache
has evicted some needed blocks of the media object,
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then it is likely that the next higher level of cache has
done so as well. These characteristics make the LRU
policy a poor choice (even worse than Random) for our
media streaming workload scenario.

The simulation results in Figure 5 illustrate how our
system achieves its scalability. These results also show
why LFU has the best performance in Figure 4.

5.3 System Architectural Parameters

As stated in Section 3.4, the system architecture de-
termines the maximum number of media streams that
can be supported. The system parameters specify the
number of levels and the branching factor at each level.
Stable system operation is dependent upon the cache
filtering bound at each level, and the branching factors.

In this section, we compare four different configura-
tions of our system, all with the same Nmax = 2048.
The configurations are 4.4.4, 2.4.8, 8.4.2, and 8.8. A
system with a larger branching factor L1 at the top has
tighter constraints on the number of media streams de-
liverable to each Level-1 proxy.

The purpose of the experiment is to understand the
effects of architectural parameters on system operation,
particularly when the cache size is small. These sim-
ulation experiments use the Random Jump workload
model, with 1000 session arrivals per hour for a sin-
gle 2-hour media object. All three cache replacement
policies (Random, LRU, and LFU) were tested.

For both Random and LFU, the system reaches its
steady-state saturation even with small cache sizes, so
the influence of the architecture is negligible.

For LRU cache replacement, the architecture does
have some influence on the results, but only when
the cache size is small (i.e., 100 blocks). When the
cache size is small, the bottleneck remains at the root.
The 2.4.8 design offers slightly better performance than
4.4.4, because of its filtering bound advantages. The
8.4.2 and 8.8 architectures perform slightly worse than
4.4.4. (For space reasons, the graphs are not shown.)

In general, when the cache size is large enough so
that the root is not the bottleneck, the branching fac-
tor has minor influence on the system scalability. There
might be minor differences if small LRU caches are
used, but LRU caches are not recommended for the
workload characteristics observed in our simulations.

5.4 Multiple Media Objects

In this section, we consider a more complex work-
load with 32 media objects. The purpose of the ex-
periment is to understand the system performance for
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Figure 6. Simulation results for a larger work-
load with 32 media objects

more realistic workloads. We use the Random Jump
user model, and 1000 session arrivals per hour.

Figure 6 shows the results from this simulation ex-
periment. The graph shows the number of user media
streams concurrently in service, as a function of simu-
lation time.

The results from this experiment reinforce those
observed in earlier experiments. In steady-state, the
system can support over 1500 concurrent user media
streams. Caching plays a key role in our architecture,
and LFU cache replacement is best. LFU exploits not
only the bias toward the start of each media object,
but also the skewed object popularities. Caching is
effective, even at modest cache sizes. The results in
Figure 6 consider cache sizes ranging from 20% to 80%
of the cumulative size of the media objects. A cache
size of 20% is adequate to attain reasonable system
performance. There is little benefit as the cache size is
increased further. Once the system is in steady-state,
few active streaming sessions are dropped.

6 Conclusions and Future Work

This paper proposes a scalable architecture for wire-
less media streaming in stadium-scale WLANs. Simu-
lation experiments show that our approach can support
up to 1600 concurrent user media streams, using exist-
ing features of 802.11 technology. Our hierarchical ap-
proach leverages multi-channel WLANs, transmission
power control, and cache-and-relay technology to build
a scalable wireless media streaming network.

Caching plays a central role in our system design.
For the media streaming workloads considered in our
work, LFU is the most effective cache replacement pol-
icy to use. This policy ensures scalable system opera-
tion, even with modest cache sizes.

The simulation results show that our approach is
promising. However, much additional work remains.

9



One major task is to assess the practicality of our sys-
tem, by developing and experimenting with a proof-of-
concept prototype. Experimental work will provide a
greater understanding of the many wireless networking
issues inherent in our approach. Experiments with user
mobility and with a broader range of media streaming
workloads are also required.
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