Chapter � AUTONUMLGL \e �1���Conclusion

This chapter evaluates the Constraint Graphs framework and describes several potential areas of future work in the field. The evaluation addresses the objectives described in chapters 1 and 4, and describes how these objectives are met by the research work. The evaluation also discusses several issues related to the framework's efficiency, scalability, expressiveness, completeness, extendibility, and flexibility.

In addition to the evaluation, this chapter describes several avenues of future research based on the current work. The current theory should be challenged based on the implementation of existing and newly designed concept mapping languages. There are also many possible alternative and variant theories that warrant investigation using variants of the software framework described in this thesis. It now seems apparent that the framework and theory could be easily and profitably extended to implement not just the syntax (Section � REF Section_VL_CGs * MERGEFORMAT �7.2�), but all the semantics of Conceptual Graphs as well. Translators similar to the Z translator described in Section � REF Section_VL_KRS \h ��7.3� could be used to link to other server programs to create systems that encompass both interactive syntax support (Constraint Graphs) and the "deep semantics" support of a language-specific (but non-graphical) server. A Java version of the CMap user interface could be used to increase Constraint Graphs portability to other environments. In addition, there are many avenues of research to pursue in order to make Constraint Graphs a powerful multi-user, collaborative tool.

� AUTONUMLGL \e �1.1.1� Addressing the Objectives

The primary objective of this work was stated in chapter 1:

“to provide the basis for concrete theories of concept mapping language syntax by developing a software framework for the development and implementation of concept mapping languages.”

Two auxiliary objectives were derived from this: formal specification and disciplined development. The formal specification objective comes from the need for unambiguous description, since Constraint Graphs can support no theory if they are not unambiguously understood. The disciplined development objective comes from the need to have confidence in the correspondence between the specification and the program.

The requirements for the framework (which constitute a commitment to a minimal theory of concept mapping languages) were developed in chapter 4. From these requirements the specification was developed in chapter 5. While the specification does not cover the whole of the framework software, it does cover the essential part that implements the corresponding theory of concept maps. This includes the fundamental component types of a concept map: nodes, contexts, arcs, and the inheritance mechanism, isa arcs. The specification unambiguously documents:

the type relationships among the primary component types (CONTEXT (NODE (COMPONENT (ARC (ISA)

the intrinsic attributes of, and constraints on, each primary component type

the method by which the primary components' type lattice can be extended to implement specific concept mapping languages

the method by which the subtype/supertype relations is computed using isa arcs

the constraints on which nodes of a particular type may appear on arc terminals (based on inheritance)

the ad-hoc constraints and how they are added to components and computed through the type lattice

the attribute/value pairs and how they are added to components and how access is computed through the type lattice

the legality of components, and how it is calculated based on inheritance, arc terminal conditions, and ad-hoc constraints

This specification, given in chapter 5, fulfills the formal specification auxiliary objective.

Chapter 6 describes an implementation of the framework software. Although the software is written in a very different language (C++) from the specification (Z), the implementation is carefully structured to follow the specification as closely as possible. Unfortunately, following the Z specification's exact structure yields an implementation far too slow for practical purposes. This problem forced the implementation to cache the isa arc references, which was a slight divergence from the structure of the specification. Fortunately, taking only this shortcut was enough to increase the speed an average of two or three orders of magnitude (the computational complexity of the subtype calculation was reduced from fourth-order polynomial to almost linear). The vast majority of the implementation closely follows the specification structure. Both specification and implementation have been annotated with HTML anchor tags such that their trivial conversion to HTML documents allows two-way hyperlinks between the parts of the specification and the corresponding parts of the implementation.

However, there is efficiency cost associated with maintaining the close correspondence between specification and implementation (see Section � REF Section_design_optimization * MERGEFORMAT �6.5.3�). (Reducing this correspondence between specification and implementation can significantly reduce the overall computational complexity, and may be necessary in the future as the framework is applied to larger data sets or is extended to different kinds of constraints.)

In addition, chapter 6 describes the conceptual framework used in the design and implementation to make the program more understandable and high-level. Gamma’s design patterns (Gamma et al. 1995) are high level organizational descriptions used in the design of the software. The C++ Standard Template Library (Nelson 1995; Stepanov & Lee 1995) is a very abstract and type-safe container library that was used in the implementation to avoid “reinventing the wheel” and offer a direct higher level of abstraction in the programming language.

The implementation has an (almost) direct correspondence to the specification. It also makes use of high-level conceptual frameworks in design and implementation. This disciplined approach yields an acceptable level of confidence that the implementation is a reasonable “concrete” facsimile of the specification.

Chapter 7 serves as a test of the primary objective of this work: to develop a software framework for the implementation of concept mapping languages. Chapter 7 describes, in detail, three concept mapping languages implemented in the Constraint Graphs framework. These languages vary in complexity from the simple gIBIS, a decision support language, to Conceptual Graphs and KDraw, both knowledge representation languages. The implementation of the syntax (and some of the semantics) of these three languages demonstrates Constraint Graphs' fulfillment of the primary objective of the thesis. This should not be taken as a claim that the theory will encompass all languages that one might want to include in the class of concept mapping languages: that will only come with further experience with implementing more languages under the framework.

� AUTONUMLGL \e �1.1.2� Issues

This section discusses the efficiency and scalability, expressiveness and completeness, extendibility, and flexibility of the current framework implementation. Most of the points within these areas are discussed elsewhere in this thesis; these are noted in the discussion.

� AUTONUMLGL \e �1.1.2.1� Efficiency and Scalability

As has already been addressed in Section � REF Section_conc_objectives \h ��9.1�, efficiency is one of Constraint Graphs’ concerns with respect to scaling up to large data sets. Efficiency has been purposefully sacrificed in favour of achieving a clean correspondence between the implementation code and the specification. However, the correspondence has been compromised because the early implementations proved much too slow. This forced references to isa arcs to be locally cached within component objects. In fact, the implementation maintains both the cached and uncached strategies by use of conditional compilation. The compilation is dependent on whether or not the macro symbol FAST1 is defined, as seen in the following code excerpt of the declaration of the Component0 class (the superclass of all component classes):

class Component0 : public Subject //inherit for the Observer/Subject pattern

 #ifdef FAST1

 ,public Observer

 #endif

 {

 friend class TypedGraph;

 public:

 typedef	set<Ref2<Attribute>, less<Attribute> > PolySetOfAttributes;

 typedef	PolySetOfAttributes::iterator AttrIterator;

 #ifdef FAST1

 typedef	list<IsaComponent*> Isas_type;

 typedef	Isas_type::iterator IsaIterator;

 #endif

 ...

protected:

 ID_type		Id;

 string			Name;

 unsigned int		Level;

 PolySetOfAttributes	Attributes;

 #ifdef FAST1

 Isas_type 		ParentIsas;

 Isas_type 		ChildIsas;

 #endif

 };

Here, the Observer class is a superclass of Component0 only if this is a cached compilation. Likewise, the two lists of cached isa references and their relevant typedefs are only declared in a cached compilation. This measure allows for checking the cached version against the original uncached version during testing, and increases confidence in the equivalence of the specification and implementation. Section � REF Section_design_optimization * MERGEFORMAT �6.5.3� discusses more technical details on cache optimization.

As Constraint Graphs is applied against larger and larger data sets in future work, it will undoubtedly show performance problems. The caching of other (non-isa) arc references are obvious candidates for efficiency improvements. Other efficiency strategies include:

The use of STL maps (red-black trees) and other time-efficient (but complex) structures instead of STL lists for such structures as attribute lists and graph component lists.

The flattening and reordering of nested iteration structures that model the specification’s nested universal and existential quantifiers.

� AUTONUMLGL \e �1.1.2.2� Expressiveness and Completeness

The design of Constraint Graphs concentrates on arcs and which node types they may terminate on. A corollary of that is the attention to the type lattice and the subtype/supertype relationship, since typing is the basis of arc constraints. Complex arc constraints, based on more information than just the type of the arc and the type of the termination node, are not supported except by ad-hoc constraints. An example of a complex constraint might be the modeling of sex in type Person by attribute instead of by subtyping:

�EMBED PBrush���

When modeled this way, the relationship mother is restricted to being from a Person to a Person whose sex relation terminates on Female, which could be drawn this way:

�EMBED PBrush���

where the context box indicates the secondary restriction on the Person at the terminal of the mother relationship. Allowing this kind of specification can lead to arbitrarily complex structures, which leads to very high computational complexity in the constraint validation algorithm. Since this sort of specification appears to be fairly unusual (although it's hard to tell how much it would be used if it were readily available), it does not seem worth the additional complexity at this time – particularly since ad-hoc constraints can be used for the (apparently) rare cases where complex arc constraints are required.

Contexts have been specified as being hierarchical (nested) in Constraint Graphs. But there is no inherent reason why concept mapping languages need only hierarchical contexts: overlapping contexts are also possible (and more general). However, the author knows of no concept mapping language that allows overlapping contexts (few even allow contexts), but there are other graphical languages (Venn diagrams (Hammer 1995), for instance) that do allow overlapping contexts. While there is no current compelling reason to allow overlapping contexts, it may be necessary to roll back this commitment in the future. Fortunately, this would be easy: the nested contexts restriction is implemented as a simple ad-hoc constraint (Sections 5.6, 5.8, and 5.10), and could be removed or replaced by some other appropriate constraint. Even an end-user could remove the constraint, since it's a simple matter of removing it from the ContextComponents's "constraints" attribute: there is no programming involved.

Contexts are also problematic in another way: there is no obvious "right" way for context boxes to behave in the user interface. Currently, moving a context box moves all the components it contains as well as includes all components its post-operation geometry happens to contain. Resizing a context box includes (or excludes) all the components the post-operation geometry includes (or excludes). But there are compelling alternatives. Moving a context box could move all the contained components and "bump" all the components from its new location to maintain its containment state. Resizing a context box could compress all contained components or "bump" all excluded components to maintain its original containment state.

� AUTONUMLGL \e �1.1.2.3� Extendibility

Besides the expected extendibility that comes with the object oriented programming paradigm, Constraint Graphs is easily extendible in at least three respects:

Ad-hoc constraints

Attribute/value pairs

Library pattern

Ad-hoc constraints are implemented as instances of the abstract class Validator. Arbitrary constraints may be easily added to the system by sub-classing Validator and adding an instance of the new class to the global constraint library. (Since Validator is clonable, the system can produce exact-typed copies of a specific Validator subclass without knowing the specific type – see Section � REF Section_design_librarian_pattern * MERGEFORMAT �6.5.2�.) The system calls the bool operator() method to check for pass/fail status of the validator. The system does not have to worry about details of the validators: it merely keeps lists of validators and applies them as necessary in its validation algorithm (see Section � REF Section_design_ad_hoc_contraints * MERGEFORMAT �6.4.3�). Thus, it is relatively easy to extend the system using validators with very minimal disruption to the program code.

Validators are stored in attribute/value pairs, as are all of the visual attributes (such as shape, fill color, and text color) used in the user interface. Attribute/value pairs are type-safe, identifier-indexable places where other programs or modules can easily store inheritable data within a Constraint Graphs concept map. This allows, for instance, the CMap user interface to store data (of which Constraint Graphs has no semantic knowledge) in a concept map; that data can be accessed later, or used concurrently by other views using the same concept map (see Section � REF Section_design_independent_UI * MERGEFORMAT �6.1�). Attributes and their values are also automatically inherited by subtypes of the component in which they are stored.

The library pattern, discussed in Section � REF Section_design_librarian_pattern * MERGEFORMAT �6.5.2�, allows for the easy extension of constraints and various graphical object types.

These three features, ad-hoc constraints, attribute/value pairs, and the library pattern, along with object-oriented design and implementation, combine to make the Constraint Graphs framework extendible and very flexible, as noted in the next section.

� AUTONUMLGL \e �1.1.2.4� Flexibility

The points in the previous section on extendibility are also relevant to the issue of flexibility. In addition to those points, the Constraint Graphs design is flexible in its implementation of its intrinsic model. The model is very easy to modify because most of the component constraints, such as "acyclic isa arcs" and "strictly-nested contexts", are implemented as ad-hoc constraints, which are very easy to modify if the need arises. These constraints exist as part of the constraint library and are added to the base type objects (node, arc, isa arc, and context) during program initialization. This not only makes it trivially easy to remove or replace these constraints, but also makes it easy for other type objects to re-use the same constraints (without any programming).

� AUTONUMLGL \e �1.3� Future Work

This section describes potential future work to be undertaken to extend Constraint Graphs beyond its present functionality.

� AUTONUMLGL \e �1.3� Challenging the Theory

The theory of concept mapping languages presented in the theory invites challenge. The implementation of new languages under the framework acts as concrete test of the theory's applicability to each new language. If a language cannot be implemented under the framework, the language does not fall under the domain of the theory. Either the language is not a concept mapping language, or it represents a failure of the theory and invites a revision or extension of the theory. Of course, the judgment of whether or not a particular visual language is rightfully a concept mapping language is subjective; but this is to be expected in classification of complex phenomena such as visual languages.

Such challenges have played a major role in the development of the Constraint Graphs theory. For example, the theory was extended to include multiple ontologies when the implementation of KDraw showed the need for both a semantic and a visual ontology (as described in Section � REF Section_spec_multiple_type_lattices * MERGEFORMAT �4.3.6�). The framework failed to allow the desired behaviour (individual's inheritance of attribute-value pairs from concepts while baring the application of concept's constraint behaviour). In this case, the failure indicated a deficiency in the theory, which lead to its extension to include multiple type lattices, which was implemented as ontology filters in the framework.

In addition to the languages described in Chapter 7, several other languages have been defined using the Constraint Graphs framework with varying degrees of success. One of these languages was a new language (which was originally designed using Constraint Graphs) called Annotated Flow Chart (Kremer & Lukose 1997). This language is an extension to flow charts and presented no challenge at all for Constraint Graphs. In contrast, some of the object oriented notations were also implemented, and these presented some challenge to Constraint Graphs. The problem here involved contexts, which are probably underdeveloped in the present theory. In these implementations, methods where modeled as nodes that could only be contained inside classes or objects (which were modeled as contexts). While ad-hoc constraints could be used to solve the problem, it seems natural that there should be a way to model such constraints visual, just as arc termination constraints are visually specified in a natural way. Exactly how this could be done, or even if it should be done, is open to debate.

Contexts themselves present a issue in the theory. It is debatable whether contexts belong in a theory of concept maps. Many concept mapping language lack the notion of context; for example neither of gIBIS nor KDraw contain any notion of contexts (although KDraw allows one to draw a context, it has no semantic meaning whatsoever). On the other hand, Conceptual Graphs embraces context as a fundamental notion. The current theory allows for the use of contexts, but contexts can be easily constrained away for languages that do not use context. The contexts in theory follow Conceptual Graphs in that contexts are strictly nested and cannot be "overlapped" (Section � REF Section_req_contexts * MERGEFORMAT �4.3.2.4�). This is a contentious point since using this constraint does not admit such languages as Venn diagrams and Euler circles (Hammer 1995). However, elimination of these languages is probably justified in that it easy to judge Venn diagrams and Euler circles as not being concept maps since their semantics (and lack of arcs) is substantially different from most "obvious" concept mapping languages.

There is much future work in implementation of both existing and new concept mapping languages in the framework. The expectation is that this will lead to a better and more complete theory of concept mapping languages.

� AUTONUMLGL \e �1.3� Alternate Theories

There are many alternate possibilities in formulating a theory of concept mapping languages. Several alternatives have already been mentioned:

Omitting contexts from the theory: This possibility does not admit Conceptual Graphs as a concept mapping language. (But Conceptual Graphs should probably be admitted.)

Relaxing the theory's constraint on hierarchical contexts (Section � REF Section_req_contexts * MERGEFORMAT �4.3.2.4�): This might admit languages like Venn diagrams and Euler diagrams, which are questionably classified as concept mapping languages.

Accommodating context constraints: The present theory says nothing about constraining components to exist only in a particular context type or restricting the a context type to contain only particular component types. While this can be done through ad-hoc constraints, supporting this ability through some "native" method (analogous to arc constraints) might be more appropriate.

There exist alternative theories that are far more fundamental that these. One of the more important possibilities is the theory implied by both KDraw and Conceptual Graphs: that nodes should "control" the graph syntax, and arcs take a subservient role. In both these languages, arc types are largely neglected in favour of a rich set of node types. In KDraw, arcs are all binary and untyped and their meaning can only be inferred from the types of the nodes at their terminals (the exception is arcs between concepts which have three relations [subtype, coreferent, and disjoint] and are visual distinguished). In Conceptual Graphs, nodes take on the role of relations in a (almost) strictly bipartite graph and strictly binary arcs are untyped (except for the coreferent arc, which also breaks the bipartite nature of the graphs). Indeed, the arc-centric theory put forward in this thesis may be viewed as a challenge to the unstated node-centric theory implied by these and other concept mapping languages. Constraint Graphs takes the view that syntax (and some semantics) is constrained via arcs instead of nodes.

One may also formulate a theory that is the extreme opposition to the node-centric theory. It is possible to eliminate nodes from the theory entirely and view nodes only as arcs with an arity of zero. This arcs-only theory has the appeal of greater simplicity and homogeneity, since it eliminates one of the four fundamental types (nodes) in the theory. It also allows for a straightforward description of arcs whose type label is an entire subgraphs, since such an arc is merely a context with arity greater than zero. The main drawback of the arcs-only theory is it may be viewed as too radical, and therefore difficult for many researchers to accept. This theory is viewed by the author as important, and will be tested by a variant of the framework in the near future.

� AUTONUMLGL \e �1.3� Semantics of Conceptual Graphs

The description of the Constraint Graphs implementation of Conceptual Graphs in Section � REF Section_VL_CGs * MERGEFORMAT �7.2� models the syntax and some of the semantics (the type lattice) of Conceptual Graphs. If fact, of the four parts of a Conceptual Graphs cannon (graphs, type lattice, conformity relations, and formation rules) Constraint Graphs very naturally models three of them. The graphs are easily expressed in Constraint Graphs and both the type lattice and conformity relations (instance-of relations) are modeled using Constraint Graphs' is-a arcs within the graphs themselves. The one part of the Conceptual Graphs cannon that isn't modeled in Constraint Graphs is the formation rules. But, in fact, some of the formation rules are currently implemented in Constraint Graphs; other rules are easily and naturally modeled in simple implementation extensions to Constraint Graphs; and the remaining rules could be added as graph operations that might just as well be applied to other concept mapping languages.

It is therefore very compelling to add the remaining Conceptual Graphs formation rules as Constraint Graphs manipulation operators. This would achieve a complete implementations of Conceptual Graphs within Constraint Graphs. The four Conceptual Graphs formation rules and their likely implementation under Constraint Graphs is as follows:

Restrict: The restrict operator is already implemented in Constraint Graphs since one of Constraint Graphs fundamental operations is subtyping by drawing an is-a arc from the subtype to the supertype. Any constraints violated the addition of such an is-a arc cause an immediate, run-time refusal of the operation.

Copy: In the graphical environment of Constraint Graphs, the Conceptual Graphs copy operator naturally maps onto a standard copy-and-paste operation. While copy-and-paste has not been yet implemented in Constraint Graphs, it is a natural operation that would be implemented regardless of its need in a Conceptual Graphs implementation.

Simplify: The Conceptual Graphs simplify operator could be implemented as an intrinsic function of the systems: it would automatically be applied whenever the system detected two identically-typed arcs between two nodes. The implementation of such an intrinsic operator could be done trivially as a "noDuplicates" ad-hoc constraint on the Conceptual Graphs' top-level arc type, relation.

Join: The join formation rule is the hardest to implement, but could be implemented either by an internal coreference arc or by merging two components into one. The first alternative would involve extending the theory to include the concept of coreference where the semantics of coreference arcs would be as conduits through which constraints are automatically propagated. The second implementation would merely involve a merge of two components into a single component with a single unique ID and changing all references in the graph to the new ID. The first operation seems slightly more appealing because it keeps more information about the history, and is therefore somewhat more "undoable" (without a command history list – both are equally "undoable" in the presence of command history list).

One must cautiously avoid "polluting" the theory (and framework) with language-specific features, so a conservative evaluation of the generality of these new operators is in order. However, these operators all seem very generally applicable to most concept mapping languages (with the possible exception of join): restrict already exists; copy seems very natural in the graphical environment; and simplify can be implemented as a take-it-or-leave-it ad-hoc constraint. Join is the only one of the formation rules that is "active", in that it would involve the user actively issuing a new command to the system, but nonetheless, it does appear to be a command that could be applicable to many other languages. As a case in point, it is semantically very similar to the KDraw coreference relation. It could be argued that the theory should be extended to encompass coreference as a fundamental concept, and this would subsume the join operator. Whether this is graphically shown as a coreference arc or a merge of two components (or either) is more a issue of implementation and user interface than an issue of the theory.

� AUTONUMLGL \e �1.3.1� Translators

A relatively simple translator has already been shown in Section � REF Section_Z_transation \h ��8.1�. This translator converts a system developed in Constraint Graphs to a Z specification. While this may be useful for Z-literate users in understanding a system, the generated Z notation is considerably more verbose and hard-to-understand than the original Constraint Graphs definition. Although it is a useful demonstration, it is of limited utility.

More useful would be translators to other systems. For example, the KDraw Constraint Graphs system described in Section � REF Section_VL_KRS \h ��7.3� could be translated into the KDraw version of CLASSIC, and passed to a KDraw engine where inferences could be made. If the translator could also translate back to native Constraint Graphs format, the inferences could be used as updates to the original graph, giving the user the impression that the graphical interface "knows" how to do inferences.

� REF _Ref385439539 * MERGEFORMAT �Figure 50� shows just such a situation. The Constraint Graphs process is using the KDraw definition described in Section � REF Section_VL_KRS \h ��7.3�, which describes KDraw syntax. The translator, built similarly to the Z translator, converts the user's definition into KDraw's CLASSIC-like representation language and sends the result to a KDraw process. The KDraw process is a server that may reside on the same machine, or may reside elsewhere on the Internet. A simple server protocol modeled on the HTTP protocol would suffice. The translator could also easily invoke the KDraw process (on the local machine) if it where not already running. This is not unlike the current KDraw "compilation" in the current version of KRS.

� AUTONUMLGL \e �1.3.2� Java Integration

�EMBED Unknown���

Figure � SEQ Figure * ARABIC �50�: An example of Constraint Graphs as a KDraw front-end

Platform portability is not a large issueproblem for the main part of Constraint Graphs since it is written is ANSII C++ and avoids the use of platform specific features. On the other hand, the CMap interface portion of Constraint Graphs is highly machine dependent because it cannot avoid using graphical routines and system routines (such as menu manipulators) that are highly platform-dependent. Steps have been taken to isolate this platform dependence: all system-dependent calls have been abstracted to platform-independent generalizations, and are contained in a code library and accessed indirectly by the programs through this library. This allows one to accomplish most of the work of a porting the framework to another platform by simply replacing the platform-dependent library.

Nonetheless, porting the interface to another platform still entails considerable effort both in terms of the initial work and ongoing support. Most of this work could be avoided by rewriting the interface in a platform-independent language, as Java is currently shaping up to be. As discussed in Section � REF Section_embedding_in_HTML * MERGEFORMAT �8.2.1�, re-writing all of Constraint Graphs does not seem to be a viable option; but, fortunately, Java is well equipped to interface with other languages, thanks to its "native method" facility. Java native methods are methods that do not have a Java body, but call a function in a run-time library using a standard protocol: they act just like Java methods, and so present a very clean interface to methods written in other languages.

It would not be difficult to implement to interface a Java version of CMap to the current version of Constraint Graphs, where the two system communicate through "native" Java methods. In support of this goal, Java versions of the CMap library and the CMapper program have been developed at the University of Calgary (Flores-Mendez 1997). Since the Java programs include both a stand-alone version and a Web-browser embedded version, these programs form a good basis for Java-integrated Constraint Graphs versions.

� AUTONUMLGL \e �1.3.3� Groupware

The Constraint Graphs groupware version described in Section � REF Section_CSCW * MERGEFORMAT �8.3� should not be viewed as anything more than a prototype. Much more work needs to be done to make Constraint Graphs a viable groupware application. Among the needed improvements are:

Constraint Graphs' current undo command is appropriate only for single-user application. A more realistic multi-user undo protocol would not be difficult to implement, but it is still unclear which protocol is appropriate.

The current synchronization model for the current multi-user Constraint Graphs version uses an optimistic protocol that incurs virtually no latency for the local user, but can incur very high overhead when more than a few users are involved. No dependency analysis is done when another user's command with a "past" time-stamp arrives; instead, the command list is unwrapped by undoing all the commands until the appropriate time for the new command is reached, and then the new command is executed, and all the "undone" commands are re-executed. In contrast, JMapper currently uses a pessimistic protocol that does not have the overhead problem, but can incur very high latency for the local user's commands on slow networks.

Other-user awareness is an issue for all shared-workspace groupware systems. Users must be aware of other users in the workspace. This is particularly important for applications where there is no conference setup, and users may enter and leave the workspace asynchronously (like they can in the current Constraint Graphs model). This has been only superficially addressed, and considerable work must go into careful design of user awareness for a Constraint Graphs groupware version.

� AUTONUMLGL \e �1.3.3� Summary

This thesis has described concept mapping languages as a sub-kind of visual languages. Even though concept maps are characterized by simple nodes and connecting arcs, the design space of concept mapping languages is large. This contention is supported by the large number of concept mapping languages in existence and the number of fields that concept mapping languages have been applied to. In order to design new concept mapping languages and to investigate variations on existing concept mapping languages, one must avoid the significant effort usually required to build graphical languages. This thesis addresses the problem by developing a general-purpose framework in which concept mapping languages can be quickly prototyped to a working application where the new (or modified) languages can be investigated.

The thesis has described visual languages, their value, semantic models, and classification. Concept mapping languages are distinguished from the more general visual languages by their distinct nodes and arcs. Several concept mapping languages are described in some detail. Since component type is an important concept in all formal concept mapping languages, the thesis describes type theory in the context of object oriented programming, graph grammars, and hypergraphs.

A detailed requirements analysis for the Constraint Graphs framework is developed in chapter 4. The formal specification (in Z) of Constraint Graphs is described in chapter 5, which amounts to a minimal theory of concept mapping languages. The design of the framework software is described in chapter 6. These chapters serve to describe the framework in detail.

Chapter 7 describes how the framework can be used by defining three different concept mapping languages: gIBIS, Conceptual Graphs, and KDraw. New languages can be defined by visually adding new nodes and arcs to the type lattice. These represent the component types of the defined language. Subtype/supertype relationships are visually defined by drawing isa arcs between the subtype component and its supertype component. These components will be used in type inference in the final language. A layering construct allows a language design to filter out generalization and other details that should no be available to the end user. More advanced language constructs can be defined using attribute/value pairs and ad-hoc constraints.

Chapter 8 describes extensions to Constraint Graphs, including translation of Constraint Graphs definitions into Z, a Netscape plug-in version of the framework, and the groupware version.

This final chapter has described how the research has met its original objective of creating a concept mapping framework by implementing several existing concept mapping languages. It also describes issues of efficiency, scalability, expressiveness, completeness, extendibility, and flexibility. Finally, some possible avenues of future work are described:

challenges to the current theory based on the implementation of existing and newly designed concept mapping languages,

alternate and variant theories,

semantic extensions to the framework to accommodate the semantics of Conceptual Graphs,

translators to (and from) the languages used by knowledge representation server programs,

integration with a Java concept mapping interface, and

advances in the groupware interface.

�

